
Feature Densities are Required for 
Computing Feature Correspondences 

Subutai Ahmad 
Interval Research Corporation 

1801-C Page Mill Road, Palo Alto, CA 94304 
E-mail: ahmadCDinterval.com 

Abstract 

The feature correspondence problem is a classic hurdle in visual 
object-recognition concerned with determining the correct mapping 
between the features measured from the image and the features ex
pected by the model. In this paper we show that determining good 
correspondences requires information about the joint probability 
density over the image features. We propose "likelihood based 
correspondence matching" as a general principle for selecting op
timal correspondences. The approach is applicable to non-rigid 
models, allows nonlinear perspective transformations, and can op
timally deal with occlusions and missing features. Experiments 
with rigid and non-rigid 3D hand gesture recognition support the 
theory. The likelihood based techniques show almost no decrease 
in classification performance when compared to performance with 
perfect correspondence knowledge. 

1 INTRODUCTION 

The ability to deal with missing information is crucial in model-based vision sys
tems. The feature correspondence problem is an example where the correct map
ping between image features and model features is unknown at recognition time. 
For example, imagine a network trained to map fingertip locations to hand gestures. 
Given features extracted from an image, it becomes important to determine which 
features correspond to the thumb, to the index finger, etc. so we know which input 
units to clamp with which numbers. Success at the correspondence matching step 
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Figure 1: An example 2D feature space. Shaded regions denote high probabil
ity. Given measured values of 0.2 and 0.9, the points PI and P2 denote possible 
instantiations but PI is much more likely. 

is vital for correct classification. There has been much previous work on this topic 
(Connell and Brady 1987; Segen 1989; Huttenlocher and Ullman 1990; Pope and 
Lowe 1993) but a general solution has eluded the vision community. In this paper 
we propose a novel approach based on maximizing the probability of a set of mod
els generating the given data. We show that neural networks trained to estimate 
the joint density between image features can be successfully used to recover the 
optimal correspondence. Unlike other techniques, the likelihood based approach is 
applicable to non-rigid models, allows perspective 3D transformations, and includes 
a principled method for dealing with occlusions and missing features. 

1.1 A SIMPLE EXAMPLE 

Consider the idealized example depicted in Figure 1. The distribution of features is 
highly non-uniform (this is typical of non-rigid objects). The classification boundary 
is in general completely unrelated to the feature distribution. In this case, the 
class (posterior) probability approaches 1 as feature Xl approaches 0, and 0 as it 
approaches 1. Now suppose that two feature values 0.2 and 0.9 are measured from 
an image. The task is to decide which value gets assigned to X I and which value 
gets assigned to X2. A common strategy is to select the correspondence which gives 
the maximal network output (i.e. maximal posterior probability). In this example 
(and in general) such a strategy will pick point P2, the wrong correspondence. This 
is because the classifer output represents the probability of a class given a specific 
feature assignment and specific values. The correspondence problem however, is 
something completely different: it deals with the probability of getting the feature 
assignments and values in the first place. 
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2 LIKELIHOOD BASED CORRESPONDENCE 
MATCHING 

We can formalize the intuitive arguments in the previous section. Let C denote the 
set of classes under consideration. Let X denote the list of features measured from 
the image with correspondences unknown. Let A be the set of assignments of the 
measured values to the model features. Each assignment a E A reflects a particular 
choice of feature correspondences. \Ve consider two different problems: the task of 
choosing the best assignment a and the task of classifying the object given X. 

Selecting the best correspondence is equivalent to selecting the permutation that 
maximizes p(aIX, C). This can be re-written as: 

( I X C) = p(Xla, C)p(aIC) 
p a - , p(XIC) (1) 

p(XIC) is a normalization factor that is constant across all a and can be ignored. 
Let Xa denote a specific feature vector constructed by applying permutation a to 
X. Then (1) is equivalent to maximizing: 

p(aIX, C) = p(xaIC)p(aIC) (2) 

p(aIC) denotes our prior knowledge about possible correspondences. (For example 
the knowledge that edge features cannot be matched to color features.) When no 
prior knowledge is available this term is constant. We denote the assignment that 
maximizes (2) the maximum likelihood correspondence match. Such a correspon
dence maximizes the probability that a set of visual models generated a given set 
of image features and will be the optimal correspondence in a Bayesian sense. 

2.1 CLASSIFICATION 

In addition to computing correspondences, we would like to classify a model from 
the measured image features, i.e. compute p( CdX, C). The maximal-output based 
solution is equivalent to selecting the class Ci that maximizes p(Cilxa, C) over all 
assignments a and all classes Ci. It is easy to see that the optimal strategy is actually 
to compute the following weighted estimate over all candidate assignments: 

(C.IX C) = Lap(CiIX, a, C)p(Xla, C)p(aIC) 
p , , p(XIC) (3) 

Classification based on (3) is equivalent to selecting the class that maximizes: 

(4) 
a 

Note that the network output based solution represents quite a degraded estimate 
of (4). It does not consider the input density nor perform a weighting over possible 
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correspondences. A reasonable approximation is to select the maximum likelihood 
correspondence according to (2) and then use this feature vector in the classification 
network. This is suboptimal since the weighting is not done but in our experience 
it yields results that are very close to those obtained with (4). 

3 COMPUTING CORRESPONDENCES WITH GBF 
NETWORKS 

In order to compute (2) and (4) we consider networks of normalized Gaussian basis 
functions (GBF networks). The i'th output unit is computed as: 

(5) 

with: 

Here each basis function j is characterized by a mean vector f.lj and by oJ, a vector 
representing the diagonal covariance matrix. Wji represents the weight from the 
j'th Gaussian to the i'th output. 7rj is a weight attached to each basis function. 

Such networks have been popular recently and have proven to be useful in a num
ber of applications (e.g. (Roscheisen et al. 1992; Poggio and Edelman 1990). 
For our current purpose, these networks have a number of advantages. Under 
certain training regimes such as EM or "soft clustering" (Dempster et al. 1977; 
Nowlan 1990) or an approximation such as K-11eans (Neal and Hinton 1993), 
the basis functions adapt to represent local probability densities. In particu
lar p(xaIC) :::::: E j bj(xa). If standard error gradient training is used to set the 
weights Wij then Yi(Xa ) :::::: p( Cilxa, C) Thus both (2) and (4) can be easilty com
puted.(Ahmad and Tresp 1993) showed that such networks can effectively learn 
feature density information for complex visual problems. (Poggio and Edelman 
1990) have also shown that similar networks (with a different training regime) can 
learn to approximate the complex mappings that arise in 3D recognition. 

3.1 OPTIMAL CORRESPONDENCE MATCHING WITH 
OCCLUSION 

An additional advantage of G BF networks trained in this way is that it is possible 
to obtain closed form solutions to the optimal classifier in the presence of missing 
or noisy features. It is also possible to correctly compute the probability of feature 
vectors containing missing dimensions. The solution consists of projecting each 
Gaussian onto the non-missing dimensions and evaluating the resulting network. 
Note that it is incorrect to simply substitute zero or any other single value for the 
missing dimensions. (For lack of space we refer the reader to (Ahmad and Tresp 
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'"five" "four" '1hree" "two" "one" .. tlumbs _up " )Jointing ,. 

Figure 2: Classifiers were trained to recognize these 7 gestures. a 3D computer 
model of the hand is used to generate images of the hand in various poses. For 
each training example, we randomly choose a 3D orientation and depth, compute 
the 3D positions of the fingertips and project them onto 2D. There were 5 features 
yielding a lOD input space. 

1993) for further details.) Thus likelihood based approaches using GBF networks 
can simultaneously optimally deal with occlusions and the correspondence problem. 

4 EXPERIMENTAL RESULTS 

We have used the task of 3D gesture recognition to compare likelihood based meth
ods to the network output based technique. (Figure 2 describes the task.) "\rVe 
considered both rigid and non-rigid gesture recognition tasks. We used a GBF 
network with 10 inputs, 1050 basis functions and 7 output units. For comparision 
we also trained a standard backpropagation network (BP) with 60 hidden units on 
the task. For this task we assume that during training all feature correspondences 
are known and that during training no feature values are noisy or missing. For this 
task we assume that during training all feature correspondences are known and that 
during training no feature values are noisy or missing. Classification performance 
with full correspondence information on an independent test set is about 92% for 
the GBF network and 93% for the BP network. (For other results see (\Villiams 
et al. 1993) who have also used the rigid version of this task as a benchmark.) 

4.1 EXPERIMENTS WITH RIGID HAND POSES 

Table 1 plots the ability of the various methods to select the correct correspon
dence. Random patterns were selected from the test set and all 5! = 120 possible 
combinations were tried. MLCM denotes the percentage of times the maximum 
likelihood method (equation (2)) selected the correct feature correspondence. GBF
M and BP-M denotes how often the maximal output method chooses the correct 
correspondence using GBF nets and BP. "Random" denotes the percentage if cor
respondences are chosen randomly. The substantially better performance of MLCM 
suggests that, at least for this task, density information is crucial. It is also interest
ing to examine the errors made by MLCM. A common error is to switch the features 
for the pinky and the adjacent finger for gestures "one", "two", "thumbs-up" and 
"pointing". These two fingertips often project very close to one another in many 
poses; such a mistake usually do not affect subsequent classification. 
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Selection Method Percentage Correct 
Random 1.2% 
GBF-NI 8.8% 
BP-M 10.3% 
MLCM 62.0% 

Table 1: Percentage of correspondences selected correctly. 

Classifier Classification Performance 
BP-Random 28.0% 
BP-11ax 39.2% 
GBF-Max 47.3% 
GBF-vVLC 86.2% 
GBF-Known 91.8% 

Table 2: Classification without correspondence information. 

Table 2 shows classification performance when the correspondence is unknown. 
GBF-WLC denotes weighted likelihood classification using GBF networks to com
pute the feature densities and the posterior probabilities. Performance with the 
output based techniques are denoted with GBF-M and BP-M. BP-R denotes per
formance with random correspondences using the back propagation network. GBF
known plots the performance of the G BF network when all correspondences are 
known. The results are quite encouraging in that performance is only slightly de
graded with WLC even though there is substantially less information present when 
correspondences are unknown. Although not shown, results with MLCM (i.e. not 
doing the weighting step but just choosing the correspondence with highest prob
ability) are about 1 % less than vVLC. This supports the theory that many of the 
errors of MLCM in Table 1 are inconsequential. 

4.1.1 Missing Features and No Correspondences 

Figure 3 shows error as a function of the number of missing dimensions. (The 
missing dimensions were randomly selected from the test set.) Figure 3 plots the 
average number of classes that are assigned higher probability than the correct class. 
The network output method and weighted likelihood classification is compared to 
the case where all correspondences are known. In all cases the basis functions 
were projected onto the non-missing dimensions to approximate the Bayes-optimal 
condition. As before, the likelihood based method outperforms the output based 
method. Surprisingly, even with 4 of the 10 dimensions missing and with correspon
dences unknown, \VLC assigns highest probability to the correct class on average 
(performance score < 1.0). 
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Figure 3: Error with mIssmg features when no correspondence information is 
present. The y-axis denotes the average number of classes that are assigned higher 
probability than the correct class. 

4.2 EXPERIMENTS WITH NON-RIGID HAND POSES 

In the previous experiments the hand configuration for each gesture remained rigid. 
Correspondence selection with non-rigid gestures was also tried out. As before a 
training set consisting of examples of each gesture was constructed. However, in 
this case, for each sample, a random perturbation (within 20 degrees) was added to 
each finger joint. The orientation of each sample was allowed to randomly vary by 
45 degrees around the x, y, and z axes. When viewed on a screen the samples give 
the appearance of a hand wiggling around. Surprisingly, GBF networks with 210 
hidden units consistently selected the correct correspondences with a performance 
of 94.9%. (The performance is actually better than the rigid case. This is because 
in this training set all possible 3D orientations were not allowed.) 

5 DISCUSSION 

We have shown that estimates of joint feature densities can be used to successfully 
deal with lack of correspondence information even when some input features are 
missing. We have dealt mainly with the rather severe case where no prior informa
tion about correspondences is available. In this particular case to get the optimal 
correspondece, all n! possibilities must be considered. However this is usually not 
necessary. Useful techniques exist for reducing the number of possible correspon
dences. For example, (Huttenlocher and Ullman 1990) have argued that three fea-
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ture correspondences are enough to constrain the pose of rigid objects. In this case 
only O(n3 ) matches need to be tested. In addition features usually fall into incom
patible sets (e.g. edge features, corner features: etc.) further reducing the nWllber 
of potential matches. Finally: with ullage sequences one can use correspondence 
ulformation from the previous frame to constraul the set of correspondences in the 
current frame. \\llatever the situation, a likelihood based approach is a prulcipled 
method for evaluatulg the set of available matches. 
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