
896

Digital Boltzmann VLSI for
constraint satisfaction and learning

Michael Murray t Ming-Tak Leung t Kan Boonyanit t

Kong Kritayakirana t James B. Burrt* Gregory J. Wolff+

Takahiro Watanabe+ Edward Schwartz+ David G. Storktt

Allen M. Petersont

t Department of Electrical Engineering
Stanford University

Stanford, CA 94305-4055

+Ricoh California Research Center
2882 Sand Hill Road Suite 115

Menlo Park, CA 94025-7022
and

* . Sun Mlcrosystems
2550 Garcia Ave., MTV-29, room 203

Mountain View, CA 94043

Abstract

We built a high-speed, digital mean-field Boltzmann chip and SBus
board for general problems in constraint satjsfaction and learning.
Each chip has 32 neural processors and 4 weight update processors,
supporting an arbitrary topology of up to 160 functional neurons.
On-chip learning is at a theoretical maximum rate of 3.5 x 108 con
nection updates/sec; recall is 12000 patterns/sec for typical condi
tions. The chip's high speed is due to parallel computation of inner
products, limited (but adequate) precision for weights and activa
tions (5 bits), fast clock (125 MHz), and several design insights.

Digital Boltzmann VLSI for Constraint Satisfaction and Learning 897

1 INTRODUCTION

A vast number of important problems can be cast into a form of constraint satisfac
tion. A crucial difficulty when solving such problems is the fact that there are local
minima in the solution space, and hence simple gradient descent methods rarely suf
fice. Simulated annealing via the Boltzmann algorithm (BA) is attractive because it
can avoid local minima better than many other methods (Aarts and Korst, 1989).
It is well known that the problem of learning also generally has local minima in
weight (parameter) space; a Boltzmann algorithm has been developed for learning
which is effective at avoiding local minima (Ackley and Hinton, 1985). The BA
has not received extensive attention, however, in part because of its slow operation
which is due to the annealing stages in which the network is allowed to slowly relax
into a state of low error. Consequently there is a great need for fast and efficient
special purpose VLSI hardware for implementing the algorithm. Analog Boltzmann
chips have been described by Alspector, Jayakumar and Luna (1992) and by Arima
et al. (1990); both implement stochastic BA. Our digital chip is the first to imple
ment the deterministic mean field BA algorithm (Hinton, 1989), and although its
raw throughput is somewhat lower than the analog chips just mentioned, ours has
unique benefits in capacity, ease of interfacing and scalability (Burr, 1991, 1992).

2 BOLTZMANN THEORY

The problems of constraint satisfaction and of learning are unified through the
Boltzmann learning algorithm. Given a partial pattern and a set of constraints,
the BA completes the pattern by means of annealing (gradually lowering a com
putational "temperature" until the lowest energy state is found) - an example
of constraint satisfaction. Over a set of training patterns, the learning algorithm
modifies the constraints to model the relationships in the data.

2.1 CONSTRAINT SATISFACTION

A general constraint satisfaction problem over variables Xi (e.g., neural activations)
is to find the set Xi that minimize a global energy function E = -~ Lij WijXiXj,

where Wij are the (symmetric) connection weights between neurons i and j and
represent the problem constraints.

There are two versions of the BA approach to minimizing E. In one version - the
stochastic BA - each binary neuron Xi E {-I, I} is polled randomly, independently
and repeatedly, and its state is given a candidate perturbation. The probability of
acceptance of this perturbation depends upon the amount of the energy change
and the temperature. Early in the annealing schedule (Le., at high temperature)
the probability of acceptance is nearly independent of the change in energy; late in
annealing (Le., at low temperature), candidate changes that lead to lower energy
are accepted with higher probability.

In the deterministic mean field BA, each continuous valued neuron (-1 < Xi ::;

1) is updated simultaneously and in parallel, its new activation is set to Xi =
I(Lj WijXj), where 10 is a monotonic non-linearity, typically a sigmoid which
corresponds to a stochastic unit at a given temperature (assuming independent

898 Murray, Leung, Boonyanit, Kritayakirana, Burr, Wolff, Watanabe, Schwartz, Stork, and Peterson

inputs). The inverse slope of the non-linearity is proportional to the temperature; at
the end of the anneal the slope is very high and f (.) is effectively a step function. It
has been shown that if certain non-restrictive assump'tions hold, and if the annealing
schedule is sufficiently slow, then the final binary states (at 0 temperature) will be
those of minimum E (Hinton, 1989, Peterson and Hartman, 1989).

2.2 LEARNING

The problem of Boltzmann learning is the following: given a network topology
of input and output neurons, interconnected by hidden neurons, and given a set of
training patterns (input and desired output), find a set of weights that leads to high
probability of a desired output activations for the corresponding input activations.
In the Boltzmann algorithm such learning is achieved using two main phases -
the Teacher phase and the Student phase - followed by the actual Weight update.
During the Teacher phase the network is annealed with the inputs and outputs
clamped (held at the values provided by the omniscient teacher). During the anneal
of the Student phase, only the inputs are clamped - the outputs are allowed to
vary. The weights are updated according to:

D..Wij = €((x!x;) - (x:xj)) (1)

where € is a learning rate and (x~x;) the coactivations of neurons i and j at the end
of the Teacher phase and (x:xj) in at the end of the Student phase (Ackley and
Hinton, 1985). Hinton (1989) has shown that Eq. 1 effectively performs gradient
descent on the cross-entropy distance between the probability of a state in the
Teacher (clamped) and the Student (free-running) phases.

Recent simulations by Galland (1993) have shown limitations of the deterministic
BA for learning in networks having hidden units directly connected to other hidden
units. While his results do not cast doubt on the deterministic BA for constraint
satisfaction, they do imply that the deterministic BA for learning is most successful
in networks of a single hidden layer. Fortunately, with enough hidden units this
topology has the expressive power to represent all but the most pathological input
output mappings.

3 FUNCTIONAL DESIGN AND CHIP OPERATION

Figure 1 shows the functional block diagram of our chip. The most important units
are the Weight memory, Neural processors, Weight update processors, Sigmoid and
Rotating Activation Storage (RAS), and their operation are best explained in terms
of constraint satisfaction and learning.

3.1 CONSTRAINT SATISFACTION

For constraint satisfaction, the weights (constraints) are loaded into the Weight
memory, the form of the transfer function is loaded into the Sigmoid Unit, and
the values and duration of the annealing temperatures (the annealing schedule) are
loaded into the Temperature Unit. Then an input pattern is loaded into a bank
of the RAS to be annealed. Such an anneal occurs as follows: At an initial high

Digital Boltzmann VLSI for Constraint Satisfaction and Learning 899

temperature, the 32 Neural processors compute Xi = Lj WijXj in parallel for the
hidden units. A 4 x multiplexing here permits networks of up to 128 neurons to
be annealed, with the remaining 32 neurons used as (non-annealed) inputs. Thus
our chip supports networks of up to 160 neurons total. These activations are then
stored in the Neural Processor Latch and then passed sequentially to the Sigmoid
unit, where they are multiplied by the reciprocal of the instantaneous temperature.
This Sigmoid unit employs a lookup table to convert the inputs to neural outputs
by means of non-linearity f(·). These outputs are sequentially loaded back into the
activation store. The temperature is lowered (according to the annealing sched
ule), and the new activations are calculated as before, and so on. The final set of
activations Xi (i.e., at the lowest temperature) represent the solution.

Rotating
Activation

1

Sigmoid

r-----t 4 weight update processors

weight update cache

Weight
memory

32 Neural Processors (NP)

Figure 1: Boltzmann VLSI block diagram. The rotating activation storage (black)
consists of three banks, which for learning problems contain the last pattern (al
ready annealed), the current pattern (being annealed) and the next pattern (to be
annealed) read onto the chip through the external interface.

3.2 LEARNING

When the chip is used for learning, the weight memory is initialized with random
weights and the first, second and third training patterns are loaded into the RAS.
The three-bank RAS is crucial for our chip's speed because it allows a three-fold

900 Murray, Leung, Boonyanit, Kritayaldrana, Burr, Wolff, Watanabe, Schwartz, Stork, and Peterson

concurrency: 1) a current pattern of activations is annealed, while 2) the annealed
last pattern is used to update the weights, while 3) the next pattern is being loaded
from off-chip. The three banks form a circular buffer, each with a Student and a
Teacher activation store.

During the Teacher anneal phase (for the current pattern), activations of the input
and output neurons are held at the values given by the teacher, and the values of
the hidden units found by annealing (as described in the previous subsection). After
the last such annealling step (Le., at the lowest temperature), the final activations
are left in the Teacher activation store - the Teacher phase is then complete. The
annealing schedule is then reset to its initial temperature, and the above process is
then repeated for the Student phase; here only the input activations are clamped
to their values and the outputs are free to vary. At the end of this Student anneal,
the final activations are left in the Student activation storage.

In steady state, the MUX then rotates the storage banks of the RAS such that the
next, current, and last banks are now called the current, last, and next, respectively.
To update the weights, the activations in the Student and Teacher storage bank
for the pattern just annealed (now called the "last" pattern) are sent to the four
Weight update processors, along with the weights themselves. The Weight update
processors compute the updated weights according to Eq. 1, and write them back
to the Weight memory. While such weight update is occuring for the last pattern,
the current pattern is annealing and the next pattern is being loaded from off chip.

After the chip has been trained with all of the patterns, it is ready for use in
recall. During recall, a test pattern is loaded to the input units of an activation
bank (Student side), the machine performs a Student anneal and the final output
activations are placed in the Student activation store, then read off the chip to
the host computer as the result. In a constraint satisfaction problem, we merely
download the weights (constraints) and perform a Student anneal.

4 HARDWARE IMPLEMENTATION

Figure 2 shows the chip die. The four main blocks of the Weight memory are at
the top, surrounded by 32 Neural processors (above and below this memory), and
four Weight update processors (between the memory banks). The three banks of
the Rotating Activation Store are at the bottom of the chip. The Sigmoid processor
is at the lower left, and instruction cache and external interface at the lower right.
Most of the rest of the chip consists of clocking and control circuitry.

4.1 VLSI

The chip mixes dynamic and static memory on the same die. The Activation and
Temperature memories are static RAM (which needs no refresh circuitry) while the
Weight memory is dynamic (for area efficiency) . The system clock is distributed to
various local clock drivers in order to reduce the global clock capacitance and to se
lectively disable the clocks in inactive subsystems for reducing power consumption.
Each functional block has its own finite state machine control which communicates

Digital Boltzmann VLSI for Constraint Satisfaction and Learning 901

.. " ._ • ...- • . - , "o.t ' . . IM '7 ","",

Figure 2: Boltzmann VLSI chip die.

asynchronously. For diagnostic purposes, the State Machines and counters are ob
servable through the External Interface. There is a Single Step mode which has
been very useful in verifying sub-system performance. Figure 3 shows the power
dissipation throughout a range of frequencies. Note that the power is less than
2 Watts throughout.

Extensive testing of the first silicon revealed two main classes of chip error: electrical
and circuit. Most of the electrical problems can be traced to fast edge rates on
the DRAM sense-amp equalization control signals, which cause inductive voltage
transients on the power supply rails of roughly 1 Volt. This appears to be at least
partly responsible for the occasional loss of data in dynamic storage nodes. There
also seems to be insufficient latchup protection in the pads, which is aggravated by
the on-chip voltage surges. The circuit problems can be traced to having to modify
the circuits used in the layout for full chip simulation.

In light of these problems, we have simulated the circuit in great detail in order to
explore possible corrective steps. We have modified the design to provide improved
electrical isolation, resized drivers and reduced the logic depth in several compo
nents. These corrections solve the problems in simulation, and give us confidence
that the next fab run will yield a fully working chip.

4.2 BOARD AND SBus INTERFACE

An SBus interface board was developed to allow the Boltzmann chip to be used
with a SparcStation host. The registers and memory in the chip can be memory
mapped so that they are directly accessible to user software. The board can support

902 Murray, Leung, Boonyanit, Kritayakirana, Burr, Wolff, Watanabe, Schwartz, Stork, and Peterson

Table 1: Boltzmann VLSI chip specifications

Architecture
Size
Neurons
Weight memory
Activation store
Technology
Transistors
Pins
Clock
I/O rate
Learning rate
Recall rate
Power dissipation

n-Iayer, arbitrary intercoItnnections
9.5 mm x 9.8 mm
32 processors --+ 160 virtual
20,480 5-bit weights (on chip)
3 banks, 160 teacher & 160 student values in each
1. 2 11m CMOS
400,000
84
125 MHz (on chip)
3 x 107 activations/sec (sustained)
3.5 x 108 connection updates/sec (on chip)
12000 patterns/sec
:::;2 Watts (see Figure 3)

20-bit transfers to the chip at a sustained rate in excess of 8 Mbytes/second. The
board uses reconfigurable Xilinx FPGAs (field-programmable gate arrays) to allow
flexibility for testing with and without the chip installed.

4.3 SOFTWARE

The chip control program is written in C (roughly 1,500 lines of code) and commu
nicates to the Boltzmann interface card through the virtual memory. The user can
read/write to all activation and weight memory locations and all functions of the
chip (learning, recall, annealing, etc.) can thus be specified in software.

5 CONCLUSIONS AND FUTURE WORK

The chip was designed so that interchip communications could be easily incorpo
rated by means of high-speed parallel busses. The SBus board, interface and soft
ware described above will require only minor changes to incorporate a multi-chip
module (MCM) containing several such chips (for instance 16). There is minimal

2

1. 75
til 1.5 .w
.w 1. 25 111
2: 1 -~

0.75 Q)

~
0.5 0

0.
0.25

0

i I ---- i ,--f--T i ,

i ; I , i ,
! i i

I

i
I

i ,
I

50 60 70 80 90 100 110
frequency, MHz

Figure 3: Power dissipation of the chip during full operation at 5 Volts.

Digital Boltzmann VLSI for Constraint Satisfaction and Learning 903

inter chip communication delay « 3% overhead), and thus MCM versions of our
system promise to be extremely powerful learning systems for large neural network
problems (Murrayet al., 1992).

Acknowledgements

Thanks to Martin Boliek and Donald Wynn for assistance in design and construc
tion of the SBus board. Research support by NASA through grant NAGW419 is
gratefully acknowledged; VLSI fabrication by MOSIS. Send reprint requests to Dr.
Stor k: stor k@crc.ricoh.com.

References

E. Aarts & J. Korst. (1989) Simulated Annealing and Boltzmann Machines: A
stochastic approach to combinatorial optimization and neural computing. New York:
Wiley.

D. H. Ackley & G. E. Hinton. (1985) A learning algorithm for Boltzmann machines.
Cognitive Science 9, 147-169.

J. Alspector, A. Jayakumar & S. Luna. (1992) ExpeJimental evaluation of learning
in a neural microsystem. Advances in Neural Information Processing Systems-4,
J. E. Moody, S. J. Hanson & R. P. Lippmann (eds.), San Mateo, CA: Morgan
Kaufmann, 871-878.

Y. Arima, K. Mashiko, K. Okada, T. Yamada, A. Maeda, H. Kondoh & S. Kayano.
(1990) A self-learning neural network chip with 125 neurons and 10K self
organization synapses. In Symposium on VLSI Circuits, Solid State Circuits Council
Staff, Los Alamitos, CA: IEEE Press, 63-64.

J. B. Burr. (1991) Digital Neural Network Implementations. Neural Networks:
Concepts, Applications, and Implementations, Volume 2, P. Antognetti & V. Mi
lutinovic (eds.) 237-285, Englewood Cliffs, NJ: Prentice Hall.

J. B. Burr. (1992) Digital Neurochip Design. Digital Parallel Implementations of
Neural Networks. K. Wojtek Przytula & Viktor K. Prasanna (eds.), Englewood
Cliffs, N J: Prentice Hall.

C. C. Galland. (1993) The limitations of deterministic Boltzmann machine learning.
Network 4, 355-379.

G. E. Hinton. (1989) Deterministic Boltzmann learning performs steepest descent
in weight-space. Neural Computation 1, 143-150.

C. Peterson & E. Hartman. (1989) Explorations of the mean field theory learning
algorithm. Neural Networks 2, 475-494.

M. Murray, J. B. Burr, D. G. Stork, M.-T. Leung, K. Boonyanit, G. J. Wolff
& A. M. Peterson. (1992) Deterministic Boltzmann machine VLSI can be scaled
using multi-chip modules. Proc. of the International Conference on Application
Specific Array Processors. Berkeley, CA (August 4-7) Los Alamitos, CA: IEEE
Press, 206-217.

