
On the Non-Existence of a Universal Learning 
Algorithm for Recurrent Neural Networks 

Herbert Wiklicky 
Centrum voor Wiskunde en Informatica 

P.O.Box 4079, NL-1009 AB Amsterdam, The Netherlands· 
e-mail: herbert@cwi.nl 

Abstract 

We prove that the so called "loading problem" for (recurrent) neural net
works is unsolvable. This extends several results which already demon
strated that training and related design problems for neural networks are 
(at least) NP-complete. Our result also implies that it is impossible to 
find or to formulate a universal training algorithm, which for any neu
ral network architecture could determine a correct set of weights. For 
the simple proof of this, we will just show that the loading problem is 
equivalent to "Hilbert's tenth problem" which is known to be unsolvable. 

1 THE NEURAL NETWORK MODEL 

It seems that there are relatively few commonly accepted general formal definitions of the 
notion of a "neural network". Although our results also hold if based on other formal 
definitions we will try to stay here very close to the original setting in which Judd's NP 
completeness result was given [Judd, 1990]. But in contrast to [Judd, 1990] we will deal 
here with simple recurrent networks instead of feed forward architectures. 

Our networks are constructed from three different types of units: .E-units compute just 
the sum of all incoming signals; for II -units the activation (node) function is given by the 
product of the incoming signals; and with E)-units - depending if the input signal is smaller 
or larger than a certain threshold parameter fl - the output is zero or one. Our units are 
connected or linked by real weighted connections and operate synchronously. 

Note that we could base our construction also just on one general type of units, namely 
what usually is called .E II -units. Furthermore, one could replace the II -units in the below 

431 



432 Wiklicky 

construction by (recurrent) modules of simple linear threshold units which had to perform 
unary integer multiplication. Thus, no higher order elements are actually needed. 

As we deal with recurrent networks, the behavior of a network now is not just given by a 
simple mapping from input space to output space (as with feed forward architectures). In 
geneml, an input pattern now is mapped to an (infinite) output sequence. But note, that if 
we consider as the output of a recurrent network a certain final, stable output pattern, we 
could return to a more static setting. 

2 THE MAIN RESULT 

The question we will look at is how difficult it is to construct or train a neural network of 
the described type so that it actually exhibits a certain desired behavior, i.e. solves a given 
learning task. We will investigate this by the following decision problem: 

Decision 1 Loading Problem 
INSTANCE: A neural network architecture N and a learning task T . 
QUESTION: Is there a configuration C for N such that T is realized by C? 

By a network configuration we just think of a certain setting of the weights in a neural 
network. Our main result concerning this problem now just states that it is undecidable or 
unsolvable. 

Theorem 1 There exists no algorithm which could decide for any learning task T and any 
(recurrent) neural network (consisting of"£.. , TI-, and 8-units) if the given architecture can 
peiformT. 

The decision problem (as usual) gives a "lower bound" on the hardness of the related con
structive problem [Garey and Johnson, 1979]. If we could construct a correct configuration 
for all instances, it would be trivial to decide instantly if a correct configuration exists at 
all. Thus we have: 

Corollary 2 There exists no universal learning algorithm for (recurrent) neural networks. 

3 THE PROOF 

The proof of the above theorem is by constructing a class of neural networks for which it 
is impossible to decide (for all instance) if a certain learning task can be satisfied. We will 
refer for this to "Hilbert's tenth problem" and show that for each of its instances we can 
construct a neuml network, so that solutions to the loading problem would lead to solutions 
to the original problem (and vice versa). But as we know that Hilbert's tenth problem is 
unsolvable we also have to conclude that the loading problem we consider is unsolvable. 

3.1 fiLBERT'S TENTH PROBLEM 

Our reference problem - of which we know it is unsolvable - is closely related to several 
famous and classical mathematical problems including for example Fermat's last theorem. 



On the Non-Existence of a Universal Learning Algorithm for Recurrent Neural Networks 433 

Definition 1 A diophantine equation is a polynomial D in n variables with integer coeffi
cients. that is 

D(.1:J, :J:2, ... ,.1",,) = L di(3:1, .T2, ... ,.r n ) 

t 

with each term d i of the form di( 3:1, .1:2, ... , .1: rt ) = r.i . J: i • . J: iz .... . J : im, where the indices 
{i I, £2, ... , ; rrt} are taken from {I , 2, ... , 11 } and the coefficient r.i E Z. 

The concrete problem, first formulated in [Hilbert, 1900] is to develop a universal algorithm 
how to find the integer solutions for all D, i.e. a vector (3: J, .1:2, ... ,3:,1) with .1: i E Z (or 
IN), such that D( 3: 1,3:2, ... , .1: rt) = O. The corresponding decision problem therefore is the 
following: 

Decision 2 Hilbert's Tenth Problem 
INSTANCE: Given a diophantine equation D. 
QUESTION: Is there an integer solutionfor D? 

Although this problem might seem to be quite simple - it formulation is actually the shortest 
among D. Hilbert's famous 23 problems - it was not until 1970 when Y. Matijasevich could 
prove that it is unsolvable or undecidable [Matijasevich, 1970]. There is no recursive 
computable predicate for diophantine equations which holds if a solution in Z (or N) exists 
and fails otherwise [Davis, 1973, Theorem 7.4]. 

3.2 THE NETWORK ARCIDTECTURE 

The construction of a neural network IV for each diophantine D is now straight forward 
(see FigJ). It is just a three step construction. 

First, each variable .1: i of D is represented in IV by a small sub-network. The structure 
of these modules is quite simple (left side of Fig.1). Note that only the self-recurrent 
connection for the unit at the bottom of these modules is "weighted" by 0.0 < 'II! < 1.0. 
All other connection transmit their signals unaltered (i.e. w = 1.0). 

Second, the terms di in D are represent by Il-units in IV (as show in Fig.1). Therefore, 
the connections to these units from the sub-modules representing the variables .1: i of D 
correspond to the occurrences of these variables in each term d i. 

Finally, the output signals of all these Il-units is multiplied by the corresponding coefficients 
C:i and summed up by the ~-unit at the top. 

3.3 THE SUB.MODULES 

The fundamental property of the networks constructed in the above way is given by the 
simple fact that the behavior of such a neural network IV corresponds uniquely to the 
evaluation of the original diophantine D. 

First, note that the behavior of N only depends on the weights Wi in each of the variable 
modules. Therefore, we will take a closer look at the behavior of these sub-modules. 
Suppose, that at some initial moment a signal of value 1.0 is received by each variable 
module. After that the signal is reset again to 0.0. 



434 Wiklicky 

The "seed" signal starts circling via Wi. With each update circle this signal becomes a little 
bit smaller. On the other hand, the same signal is also sent to the central 8-unit, which 
sends a signal 1.0 to the top accumulator unit as long as the "circling" activation of the 
bottom unit is larger then the (preset) threshold 0,. The top unit (which also keeps track of 
its former activiations via a recurrent connection) therefore just counts how many updates 
it takes before the activiation of the bottom unit drops below 0,. 

The final, maximum, value which is emitted by the accumulator unit is some integer .1:, for 
which we have: 

We thus have a correspondence between Wi and the integer .1: i = l ~ I~/i J ' where L-T J the 
largest integer which is smaller or equal to .1:. Given .1: i we also can construct an appropriate 

weight Wi by choosing it from the interval (exp (~~) ,exp (:r.1~!1))' 

3.4 THE EQUIVALENCE 

To conclude the proof, we now have to demonstrate the equivalence of Hilbert's tenth 
problem and the loading problem for the discussed class of recurrent networks and some 
learning task. 

The learning task we will consider is the following: Map an input pattern with all signals 
equal to 1.0 (presented only once) to an output sequence which after afinite number of steps 



On the Non-Existence of a Universal Learning Algorithm for Recurrent Neural Networks 435 

is constant equal to 0.0. Note that - as discussed above - we could also consider a more 
static learing task where a final state, which detennines the (single) output of the network, 
was detennined by the condition that the outgoing signals of all 8-units had to be zero. 

Considering this learing task and with what we said about the behavior of the sub-modules it 
is now trivial to see that the constructed network just evaluates the diophantine polynomial 
for a set of variables ;r i corresponding to the (final) output signals of the sub-modules 
(which are detennined uniquely by the weight values !lii) if the input to the network is a 
pattern of all 1.0s. 

If we had a solution .1.' i of the original diophantine equation D, and if we take the corre
sponding values Wi (according to the above relation) as weights in the sub-modules of N, 
then this would also solve the loading problem for this architecture. On the other hand, if 
we knew the correct weights Wi for any such network N, then the corresponding integers 
3: i would also solve the corresponding diophantine equation D. 

In particular, if it would be possible to decide if a correct set of weights Wi for N exists 
(for the above learning task), we could also decide if the corresponding diophantine D had 
a solution 3: i E :IN (and vice versa). As the whole construction was trivial, we have shown 
that both problems are equivalent. 

4 CONCLUSIONS 

We demonstrated that the loading problem not only is NP-complete - as shown for simple 
feed fOIward architectures in [Judd, 1990], [Lin and Vitter, 1991], [Blum and Rivest, 1992], 
etc. - but actually unSOlvable, i.e. that the training of (recurrent) neural networks is among 
those problems which "indeed are intractable in an especially strong sense" [Garey and 
Johnson, 1979, P 12]. A related non-existence result concerning the training of higher order 
neural networks with integer weights was shown in [Wiklicky, 1992, WIklicky, 1994]. 

One should stress once again that the fact that no general algorithm exists for higher order 
or recurrent networks, which could solve the loading problem (for all its instances), does 
not imply that all instances of this problem are unsolvable or that no solutions exist. One 
could hope, that in most relevant cases - whatever that could mean - or, when we restrict 
the problem, a sub-class of problems things might become tractable. But the difference 
between solvable and unsolvable problems often can be very small. 

In particular, it is known that the problem of solving linear diophantine equations (instead of 
general ones) is polynomially computable, while if we go to quadratic diophantine equations 
the problem already becomes;V P complete [Johnson, 1990]. And for general diophantine 
the problem is even unsolvable. Moreover, it is also known that this problem is unsolvable if 
we consider only diophantine equations of maximum degree 4, and there exists a universal 
diophantine with only 13 variables which is unsolvable [Davis et al., 1976]. 

But we think, that one should interpret the "negative" results on NP-complexity as well 
as on undecidability of the loading problem not as restrictions for neural networks, but as 
related to their computational power. As it was shown that concrete neural networks can 
be constructed, so that they simulate a universal Turing machine [Siegelmann and Sontag, 
1992, Cosnard et al., 1993]. It is mere the complexity of the problem one attempts to solve 
which simply cannot disappear and not some intrinsic intractability of the neural network 
approach. 



436 Wiklicky 

Acknowledgement 

This work was started during the author's affiliation with the "Austrian Research Institute 
for Artificial Intelligence", Schottengasse 3, A-101O Wien, Austria. Further work was 
supported by a grant from the Austrian "Fonds zur Forderung der wissenschaftlichen 
Forschung" as Projekt J0828-PHY. 

References 

[Blum and Rivest, 1992] Avrim L. Blum and Ronald L. Rivest. Training a 3-node neural 
network is NP-complete. Neural Networks, 5:117-127,1992. 

[Cosnard et al. , 1993] Michael Cosnard, Max Garzon, and Pascal Koiran. Computability 
properties of low-dimensional dynamical systems. In Symposium on Theoretical 
Aspects of Computer Science (STACS '93), pages 365-373, Springer-Verlag, Berlin
New York, 1993. 

[Davis, 1973] Martin Davis. Hilbert's tenth problem is unsolvable. Amer. Math. Monthly, 
80:233-269, March 1973. 

[Davis et aI., 1976] Martin Davis, Yuri Matijasevich, and Julia Robinson. Hilbert's tenth 
problem - diophantine equations: Positive aspects of a negative solution. In Felix E. 
Browder, editor, Mathematical developments arising from Hilbert, pages 323-378, 
American Mathematical Society, 1976. 

[Garey and Johnson, 1979] Michael R. Garey and David S. Johnson. Computers and In
tractability -A Guide to the Theory of NP-Complete ness. W. H. Freeman, New York, 
1979. 

[Hilbert, 1900] David Hilbert. Mathematische Probleme. Nachr. Ges. Wiss. G6ttingen, 
math.-phys.Kl., :253-297, 1900. 

[Johnson, 1990] David S. Johnson. A catalog of complexity classes. In Handbook of 
Theoretical Computer Science (Volume A: Algorithms and Complexity), chapter 2, 
pages 67-161, Elsevier - MIT Press, Amsterdam - Cambridge, Massachusetts, 1990. 

[Judd, 1990] J. Stephen Judd. Neural Network Design and the Complexity of Learning. 
MIT Press, Cambridge, Massachusetts - London, England, 1990. 

[Lin and Vitter, 1991] Jyh-Han Lin and Jeffrey Scott Vitter. Complexity results on learning 
by neural networks. Machine Learning, 6:211-230,1991. 

[Matijasevich, 1970] Yuri Matijasevich. Enumerable sets are diophantine. Dokl. Acad. 
Nauk., 191:279-282, 1970. 

[Siegelmann and Sontag, 1992] Hava T. Siegelmann and Eduardo D. Sontag. On the com
putational power of neural nets. In Fifth Workshop on Computational Learning Theory 
(COLT 92), pages 440-449, 1992. 

[Wiklicky, 1992] Herbert Wiklicky. SyntheSis and Analysis of Neural Networks - On 
a Framework for Artificial Neural Networks. PhD thesis, University of Vienna -
Technical University of Vienna, September 1992. 

[WIklicky, 1994] Herbert Wiklicky. The neural network loading problem is undecidable. 
In Euro-COLT '93 - Conference on Computational Learning Theory, page (to appear), 
Oxford University Press, Oxford, 1994. 



PART III 

THEORETICAL 

ANALYSIS: DYNAMICS 

AND STATISTICS 




