
The Power of Amnesia

Dana Ron Yoram Singer Naftali Tishby
Institute of Computer Science and

Center for Neural Computation
Hebrew University, Jerusalem 91904, Israel

Abstract

We propose a learning algorithm for a variable memory length
Markov process. Human communication, whether given as text,
handwriting, or speech, has multi characteristic time scales. On
short scales it is characterized mostly by the dynamics that gen
erate the process, whereas on large scales, more syntactic and se
mantic information is carried. For that reason the conventionally
used fixed memory Markov models cannot capture effectively the
complexity of such structures. On the other hand using long mem
ory models uniformly is not practical even for as short memory as
four. The algorithm we propose is based on minimizing the sta
tistical prediction error by extending the memory, or state length,
adaptively, until the total prediction error is sufficiently small. We
demonstrate the algorithm by learning the structure of natural En
glish text and applying the learned model to the correction of cor
rupted text . Using less than 3000 states the model's performance
is far superior to that of fixed memory models with similar num
ber of states. We also show how the algorithm can be applied to
intergenic E. coli DNA base prediction with results comparable to
HMM based methods.

1 Introduction

Methods for automatically acquiring the structure of the human language are at
tracting increasing attention . One of the main difficulties in modeling the natural
language is its multiple temporal scales. As has been known for many years the
language is far more complex than any finite memory Markov source. Yet Markov

176

The Power of Amnesia 177

models are powerful tools that capture the short scale statistical behavior of lan
guage, whereas long memory models are generally impossible to estimate . The
obvious desired solution is a Markov sOUrce with a 'deep' memory just where it is
really needed. Variable memory length Markov models have been in use for language
modeling in speech recognition for some time [3, 4], yet no systematic derivation,
nor rigorous analysis of such learning mechanism has been proposed.

Markov models are a natural candidate for language modeling and temporal pattern
recognition, mostly due to their mathematical simplicity. It is nevertheless obvious
that finite memory Markov models can not in any way capture the recursive nature
of the language, nor can they be trained effectively with long enough memory. The
notion of a variable length memory seems to appear naturally also in the context of
universal coding [6]. This information theoretic notion is now known to be closely
related to efficient modeling [7]. The natural measure that appears in information
theory is the description length, as measured by the statistical predictability via
the Kullback- Liebler (KL) divergence.

The algorithm we propose here is based on optimizing the statistical prediction
of a Markov model , measured by the instantaneous KL divergence of the following
symbols, or by the current statistical surprise of the model. The memory is extended
precisely when such a surprise is significant, until the overall statistical prediction
of the stochastic model is sufficiently good. We apply this algorithm successfully for
statistical language modeling. Here we demonstrate its ability for spelling correction
of corrupted English text . We also show how the algorithm can be applied to
intergenic E. coli DNA base prediction with results comparable to HMM based
methods.

2 Prediction Suffix Trees and Finite State Automata

Definitions and Notations

Let ~ be a finite alphabet. Denote by ~* the set of all strings over~ . A string
s, over ~* of length n, is denoted by s = Sl S2 ... Sn. We denote by e the empty
string. The length of a string s is denoted by lsi and the size of an alphabet ~ is
denoted by I~I. Let, Prefix(s) = SlS2 .. . Sn-1, denote the longest prefix ofa string
s, and let Prefix*(s) denote the set of all prefixes of s, including the empty string.
Similarly, 5uffix(s) = S2S3 . . . Sn and 5uffix*(s) is the set of all suffixes of s. A
set of strings is called a prefix free set if, V Sl, S2 E 5: {Sl} nPrefix*(s2) = 0. We
call a probability measure P, over the strings in ~* proper if P(e) = 1, and for every
string s, I:aEl:P(sa) = P(s). Hence, for every prefix free set 5, I:sEsP(s):S 1,
and specifically for every integer n 2: 0, I:sEl:n P(s) = 1.

Prediction Suffix Trees

A prediction suffix tree T over ~, is a tree of degree I~I. The edges of the tree
are labeled by symbols from ~, such that from every internal node there is at most
one outgoing edge labeled by each symbol. The nodes of the tree are labeled by
pairs (s, / s) where s is the string associated with the walk starting from that node
and ending in the root of the tree, and /s : ~ --t [0,1] is the output probability
function related with s satisfying I:aEE /s(O") = 1. A prediction suffix tree induces

178 Ron, Singer, and Tishby

probabilities on arbitrary long strings in the following manner. The probability that
T generates a string w = W1W2 .. 'Wn in ~n, denoted by PT(W), is IIi=1/s.-1(Wi),
where SO = e, and for 1 :S i :S n - 1, sj is the string labeling the deepest node
reached by taking the walk corresponding to W1 ... Wi starting at the root of T. By
definition, a prediction suffix tree induces a proper measure over ~*, and hence for
every prefix free set of strings {wl , ... , wm }, L~l PT(Wi) :S 1, and specifically for
n 2: 1, then L3 En PT(S) = 1. An example of a prediction suffix tree is depicted
in Fig. 1 on the left, where the nodes of the tree are labeled by the corresponding
suffix they present.

1'0=0.6
1'1=0.4

0.4

~,---(~~,
... ...

.... ···· ~~.:.6
....

Figure 1: Right: A prediction suffix tree over ~ = {a, I}. The strings written in
the nodes are the suffixes the nodes present. For each node there is a probability
vector over the next possible symbols. For example, the probability of observing a
'1' after observing the string '010' is 0.3. Left: The equivalent probabilistic finite
automaton. Bold edges denote transitions with the symbol '1' and dashed edges
denote transitions with '0'. The states of the automaton are the leaves of the tree
except for the leaf denoted by the string 1, which was replaced by the prefixes of
the strings 010 and 110: 01 and 11.

Finite State Automata and Markov Processes

A Probabilistic Finite Automaton (PFA) A is a 5-tuple (Q, 1:, T, I, 7r), where Q is
a finite set of n states, 1: is an alphabet of size k, T : Q x ~ -;. Q is the transition
junction, I : Q x ~ -;. [0, 1 J is the output probability junction, and 7r : Q -;. [0, 1 J
is the probability distribution over the starting states. The functions I and 7r
must satisfy the following requirements: for every q E Q, LUEE I(q, 0') = 1, and
LqEQ 7r(q) = 1. The probability that A generates a string s = S1 S2 ... Sn E 1:n is
PA(S) = LqOEQ 7r(qO) TI7=l l(qi-1, Si), where qi+l = T(qi, Si).

We are interested in learning a sub-class of finite state machines which have the
following property. Each state in a machine M belonging to this sub-class is labeled
by a string of length at most L over ~, for some L 2: O. The set of strings labeling
the states is suffix free. We require that for every two states ql ,q2 E Q and for every
symbol 0' E ~, if T(q1, 0') = q2 and ql is labeled by a string s1, then q2 is labeled

The Power of Amnesia 179

by a string s2 which is a suffix of s1 . a. Since the set of strings labeling the states
is suffix free, if there exists a string having this property then it is unique. Thus,
in order that r be well defined on a given set of string S, not only must the set be
suffix free, but it must also have the property, that for every string s in the set and
every symbol a, there exists a string which is a suffix of sa. For our convenience,
from this point on, if q is a state in Q then q will also denote the string labeling
that state.

A special case of these automata is the case in which Q includes all 2L strings of
length L. These automata are known as Markov processes of order L. We are
interested in learning automata for which the number of states, n, is actually much
smaller than 2£, which means that few states have "long memory" and most states
have a short one. We refer to these automata as Markov processes with bounded
memory L. In the case of Markov processes of order L, the "identity" of the states
(i.e. the strings labeling the states) is known and learning such a process reduces to
approximating the output probability function. When learning Markov processes
with bounded memory, the task of a learning algorithm is much more involved since
it must reveal the identity of the states as well.

It can be shown that under a slightly more complicated definition of prediction
suffix trees, and assuming that the initial distribution on the states is the stationary
distribution, these two models are equivalent up to a grow up in size which is at
most linear in L. The proof of this equi valence is beyond the scope of this paper, yet
the transformation from a prediction suffix tree to a finite state automaton is rather
simple. Roughly speaking, in order to implement a prediction suffix tree by a finite
state automaton we define the leaves of the tree to be the states of the automaton.
If the transition function of the automaton, r(-, .), can not be well defined on this
set of strings, we might need to slightly expand the tree and use the leaves of the
expanded tree. The output probability function of the automaton, ,(-, .), is defined
based on the prediction values of the leaves of the tree. i.e., for every state (leaf)
s, and every symbol a, ,(s, a) = ,s (a). The outgoing edges from the states are
defined as follows: r(q1, a) = q2 where q2 E Suffix*(q1a). An example of a finite
state automaton which corresponds to the prediction tree depicted in Fig. 1 on the
left, is depicted on the right part of the figure.

3 Learning Prediction Suffix Trees

Given a sample consisting of one sequence of length I or m sequences of lengths
11 ,/2 , ... ,1m we would like to find a prediction suffix tree that will have the same
statistical properties of the sample and thus can be used to predict the next outcome
for sequences generated by the same source. At each stage we can transform the
tree into a Markov process with bounded memory. Hence, if the sequence was
created by a Markov process, the algorithm will find the structure and estimate
the probabilities of the process. The key idea is to iteratively build a prediction
tree whose probability measure equals the empirical probability measure calculated
from the sample.

We start with a tree consisting of a single node (labeled by the empty string e) and
add nodes which we have reason to believe should be in the tree. A node as, must be
added to the tree if it statistically differs from its parent node s. A natural measure

180 Ron, Singer, and Tishby

to check the statistical difference is the relative entropy (also known as the Kullback
Liebler (KL) divergence) [5], between the conditional probabilities PCI s) and
PCIO"s). Let X be an observation space and Pl , P2 be probability measures over X

then the KL divergence between Pl and P'2 is, DKL(Pl IIP2) = 2:XEx Pl(X) log ;~~:~.
Note that this distance is not symmetric and P l should be absolutely continuous
with respect to P2 . In our problem, the KL divergence measures how much addi
tional information is gained by using the suffix crs for prediction instead of predicting
using the shorter suffix s. There are cases where the statistical difference is large
yet the probability of observing the suffix crs itself is so small that we can neglect
those cases. Hence we weigh the the statistical error by the prior probability of
observing crs. The statistical error measure in our case is,

E1'1'(o"s, s) P(O"s) DKL (P(-IO"s)IIPCls))
P() ~ P('I) I P(a'las) O"s L....-a'EE 0" O"S og P(a'ls)

~ P(') 1 P(a3a')
L....-a'E~ O"SO" og P(a'ls)P(as)

Therefore, a node crs is added to the tree if the statistical difference (defined by
E1'1'(crs, s)) between the node and its parrent s is larger than a predetermined
accuracy c The tree is grown level by level, adding a son of a given leaf in the
tree whenever the statistical surprise is large. The problem is that the requirement
that a node statistically differs from it's parent node is a necessary condition for
belonging to the tree, but is not sufficient. The leaves of a prediction suffix tree must
differ from their parents (or they are redundant) but internal nodes might not have
this property. Therefore, we must continue testing further potential descendants
of the leaves in the tree up to depth L. In order to avoid exponential grow in the
number of strings tested, we do not test strings which belong to branches which are
reached with small probability. The set of strings, tested at each step, is denoted
by 5, and can be viewed as a kind of potential 'frontier' of the growing tree T. At
each stage or when the construction is completed we can produce the equivalent
Markov process with bounded memory. The learning algorithm of the prediction
suffix tree is depicted in Fig. 2. The algorithm gets two parameters: an accuracy
parameter t and the maximal order of the process (which is also the maximal depth
of the tree) L.

The true source probabilities are not known, hence they should be estimated from
the empirical counts of their appearances in the observation sequences. Denote by
#s the number of time the string s appeared in the observation sequences and by
#crls the number of time the symbol cr appeared after the string s. Then, usmg
Laplace's rule of succession, the empirical estimation of the probabilities is,

- ~ #s + 1 - ~ #crls + 1
P(s) ~ P(s) = 2: #' I~I P(crls) ~ P(O"ls) = 2: # 'I I I

3'EEIsi S + a'E~ 0" S + ~

4 A Toy Learning Example

The algorithm was applied to a 1000 symbols long sequence produced by the au
tomaton depicted top left in Fig. 3. The alphabet was binary. Bold lines in the
figure represent transition with the symbol '0' and dashed lines represent the sym
bol '1'. The prediction suffix tree is plotted at each stage of the algorithm. At the

The Power of Amnesia 181

• Initialize the tree T and the candidate strings S:
T consists of a single root node , and S - {O" I 0" E ~ /\ p(0") 2: t} .

• While S =I 0, do the following:

1. Pick any s E S and remove it from S.

2. If Err{s, Suffix(s)) 2: E then add to T the node corresponding to s
and all the nodes on the path from the deepest node in T (the deepest
ancestor of s) until s.

3. If lsi < L then for every 0" E ~ if P(O"s) 2: E add O"S to S.

Figure 2: The algorithm for learning a prediction suffix tree.

end of the run the correponding automat.on is plotted as well (bottom right.). Note
that the original automaton and the learned automaton are the same except for
small diffrences in the transition probabilities.

0.7 0.3

0.32.
0.68

o.
o.

0.14
0.86

0.69 0.31

Figure 3: The original automaton (top left), the instantaneous automata built along
the run of the algorithm (left to right and top to bottom), and the final automaton
(bottom left).

5 Applications

We applied the algorithm to the Bible with L = 30 and E = 0.001 which resulted in
an automaton having less than 3000 states. The alphabet was the english letters and
the blank character. The final automaton constitutes of states that are of length
2, like r qu' and r xe', and on the other hand 8 and 9 symbols long states, like
r shall be' and r there was'. This indicates that the algorithm really captmes

182 Ron, Singer, and Tishby

the notion of variable context length prediction which resulted in a compact yet
accurate model. Building a full Markov model in this case is impossible since
it requires II:IL = 279 states. Here we demonstrate our algorithm for cleaning
corrupted text. A test text (which was taken out of the training sequence) was
modified in two different ways. First by a stationary noise that altered each letter
with probability 0.2, and then the text was further modified by changing each
blank to a random letter. The most probable state sequence was found via dynamic
programming. The 'cleaned' observation sequence is the most probable outcome
given the knowledge of the error rate. An example of such decoding for these two
types of noise is shown in Fig. 4. We also applied the algorithm to intergenic

Original Text:
and god called the dry land earth and the gathering together of the waters called
he seas and god saw that it was good and god said let the earth bring forth grass
the herb yielding seed and the fruit tree yielding fruit after his kind

Noisy text (1):
and god cavsed the drxjland earth ibd shg gathervng together oj the waters dlled
re seas aed god saw thctpit was good ann god said let tae earth bring forth gjasb
tse hemb yielpinl peed and thesfruit tree sielxing fzuitnafter his kind

Decoded text (1):
and god caused the dry land earth and she gathering together of the waters called
he sees and god saw that it was good and god said let the earth bring forth grass
the memb yielding peed and the fruit tree fielding fruit after his kind

Noisy text (2):
andhgodpcilledjthesdryjlandbeasthcandmthelgatceringhlogetherjfytrezaatersoczlled
xherseasaknddgodbsawwthathitqwasoqoohanwzgodcsaidhletdtheuejrthriringmforth
bgrasstthexherbyieidingzseedmazdctcybfruitttreeayieidinglfruztbafberihiskind

Decoded text (2):
and god called the dry land earth and the gathering together of the altars called he
seasaked god saw that it was took and god said let the earthriring forth grass the
herb yielding seed and thy fruit treescielding fruit after his kind

Figure 4: Cleaning corrupted text using a Markov process with bounded memory.

regions of E. coli DNA, with L = 20 and f. = 0.0001. The alphabet is: A. C. T. G.
The result of the algorithm is an automaton having 80 states. The names of the
states of the final automaton are depicted in Fig. 5. The performance of the model
can be compared to other models, such as the HMM based model [8], by calculating
the normalized log-likelihood (NLL) over unseen data. The NLL is an empirical
measure of the the entropy of the source as induced by the model. The NLL of
bounded memory Markov model is about the same as the one obtained by the
HMM .based model. Yet, the Markov model does not contain length distribution
of the intergenic segments hence the overall perform ace of the HMM based model
is slightly better. On the other hand, the HMM based model is more complicated
and requires manual tuning of its architecture.

The Power of Amnesia 183

ACT G AA AC AT CA CC CT CG TA TC TT TG GA GC GT GG AAC AAT AAG
ACA ATT CAA CAC CAT CAG CCA CCT CCG CTA CTC CTT CGA CGC CGT TAT
TAG TCA TCT TTA TTG TGC GAA GAC GAT GAG GCA GTA GTC GTT GTG
GGA GGC GGT AACT CAGC CCAG CCTG CTCA TCAG TCTC TTAA TTGC
TTGG TGCC GACC GATA GAGC GGAC GGCA GGCG GGTA GGTT GGTG
CAGCC TTGCA GGCGC GGTTA

Figure 5: The states that constitute the automaton for predicting the next base of
intergenic regions in E. coli DNA.

6 Conclusions and Future Research

In this paper we present a new efficient algorithm for estimating the structure and
the transition probabilities of a Markov processes with bounded yet variable mem
ory. The algorithm when applied to natural language modeling result in a compact
and accurate model which captures the short term correlations. The theoretical
properties of the algorithm will be described elsewhere. In fact, we can prove that
a slightly different algorithm constructs a bounded memory markov process, which
with arbitrary high probability, induces distributions (over I:n for n > 0) which
are very close to those induced by the 'true' Markovian source, in the sense of the
KL divergence. This algorithm uses a polynomial size sample and runs in poly
nomial time in the relevent parameters of the problem. We are also investigating
hierarchical models based on these automata which are able to capture multi-scale
correlations, thus can be used to model more of the large scale structure of the
natural language.

Acknowledgment

We would like to thank Lee Giles for providing us with the software for plotting finite state
machines, and Anders Krogh and David Haussler for letting us use their E. coli DN A data
and for many helpful discussions. Y.S. would like to thank the Clore foundation for its
support.

References

[1] J.G Kemeny and J.L. Snell, Finite Markov Chains, Springer-Verlag 1982.

[2] Y. Freund, M. Kearns, D. Ron, R. Rubinfeld, R.E. Schapire, and L. Sellie,
Efficient Learning of Typical Finite Automata from Random Walks, STOC-93 .

[3] F. Jelinek, Self-Organized Language Modeling for Speech Recognition, 1985.

[4] A. N adas, Estimation of Probabilities in the Language Model of the IBM Speech
Recognition System, IEEE Trans. on ASSP Vol. 32 No.4, pp. 859-861, 1984.

[5] S. Kullback, Information Theory and Statistics, New York: Wiley, 1959.

[6] J. Rissanen and G. G. Langdon, Universal modeling and coding, IEEE Trans .
on Info. Theory, IT-27 (3), pp. 12-23, 1981.

[7] J. Rissanen, Stochastic complexity and modeling, The Ann. of Stat., 14(3),1986.

[8] A. Krogh, S.1. Mian, and D. Haussler, A Hidden Markov Model that finds genes
in E. coli DNA, UCSC Tech. Rep. UCSC-CRL-93-16.

