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Abstract 

Matched filtering has been one of the most powerful techniques 
employed for transient detection. Here we will show that a dynamic 
neural network outperforms the conventional approach. When the 
artificial neural network (ANN) is trained with supervised learning 
schemes there is a need to supply the desired signal for all time, 
although we are only interested in detecting the transient. In this 
paper we also show the effects on the detection agreement of 
different strategies to construct the desired signal. The extension of 
the Bayes decision rule (011 desired signal), optimal in static 
classification, performs worse than desired signals constructed by 
random noise or prediction during the background. 

1 INTRODUCTION 

Detection of poorly defined waveshapes in a nonstationary high noise background is 
an important and difficult problem in signal processing. The matched filter is the 
optimal linear filter assuming stationary noise [Thomas, 1969]. The application area 
that we are going to discuss is epileptic spike detection in the electrocorticogram 
(ECoG), where the matched filtering produce poor results [Barlow and Dubinsky, 
1976], [Pola and Romagnoli, 1979] due to the variability of the spike shape and the 
ever changing background (the brain electric activity). Recently artificial neural 
networks have been applied to spike detection [Eberhart et ai, 1989], [Gabor and 

688 



Transient Signal Detection with Neural Networks: The Search for the Desired Signal 689 

Seydal, 1992], but static neural network architectures were chosen. Here a static 
multilayer perceptron (MLP) will be augmented with a short term memory 
mechanism to detect spikes. In the way we utilized the dynamic neural net, the ANN 
can be thought of as an extension of the matched filter to nonlinear models, which 
we will refer to as a neural template matcher. In our implementation, the ANN looks 
directly at the input signal with a time window larger than the longest spike for the 
sampling frequency utilized. The input layer of the dynamic network is a delay line, 
and the data is clocked one sample at a time through the network. The desired signal 
is "I" following the occurrence of a spike. With this strategy we teach the ANN to 
produce an output of" 1" when a waveform similar to the spike is present within the 
time window. A spike will be recognized when the ANN output is above a given 
threshold. 

Unlike the matched filter, the ANN does not require a single, explicit waveform for 
the template (due to the spike shape variability some form of averaging is needed to 
create the "average" spike shape which is normally a poor compromise). Rather, the 
ANN will learn the important features of the transient class by training on many 
sample spikes, refining its approximation with each presentation. Moreover, the 
ANN using the sigmoid nonlinearity will have to necessarily represent the 
background activity, since the discriminant function in pattern space is established 
from information pertaining to all input classes. Therefore, the nonstationary nature 
of the background can be accommodated during network training and we can expect 
that the performance of the neural template matcher will be improved with respect to 
the matched filter. 

We will not address here the normalization of the ECoG, nor the issues associated 
with the learning criterion [Zahalka, 1992]. The purpose of this paper is to delve on 
the design of the desired signal, and quantify the effect on performance. What should 
be the shape of the desired sinal for transient detection, when on-line supervised 
learning is employed? In our approach we decided to construct a desired signal that 
exists for all time. We shall point out that the existence of a desired signal for every 
sample will simplify supervised learning, since in principle the conventional 
backpropagation algorithm [Rumelhart et aI, 1986] can be utilized instead of the 
more time consuming backpropagation through time [Werbos, 1990] or real-time 
recurrent learning [Williams and Zipzer, 1989]. The simplified learning algorithm 
may very well be one of the factors which will make ANNs learn on-line as adaptive 
linear filters do. The main decision regarding the desired signal for spike detection is 
to decide the value of the desired signal during the background (which for spikes 
represent 99% of the time), since we decided already that it should be "1" following 
the spike. Similar problems have been found in speech recognition, when patterns 
that exist in time need to be learned [Unnikrishnan et aI, 1991] [Watrous et aI, 1990]. 
Here we will experimentally compare three desired signals (Figure 1): 

Desired signal 1- Extrapolating the Bayes rule for static patterns [Makhoul], we will 
create a target of zero during the background, and a value of 1 following the spike , 
with a duration equal to the amount of time the spike is in the input window. 

Desired signal 11- During the background, a random, uniformly distributed (between 
-0.5 and 0.5), zero mean target signal. Same target as above following the spike. 
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Desired signal 111- During the background the network will be trained as a one step 
predictor. Same targe,t as above following the spike. 
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Figure 1. Desired signals considered. 

2 NEURAL NETWORK ARCmTECTURE AND TRAINING 

One ECoG channel was sampled at 500 Hz (12 bit AID converter) and was pre
processed for normalization between -1 and 0.4, and DC removal before being 
presented to the ANN [Zahalka, 1992]. An epileptic spike has a duration between 20 
and 70 msec. 

The dynamic network used for this application is a time delay neural network 
(TDNN) consisting of an input layer with 45 taps, 12 hidden processing elements 
(PEs) and one linear output PE. The input window corresponds to 90 msec, so even 
the longest spike is fully present in the window during at least 10 samples. 

The training set consists of 60 hand picked 2 sec. segments containing one spike 
each, embedded in 6,860 points of background activity. In principle the data could be 
streamed on-line to the ANN, provided that we could create also on-line the desired 
signal. But at this point of the research we preferred to control the segment length 
and choose well defined spikes to study training issues. The test data set consists of 
another set (belonging to the same individual) of 49 spikes embedded in 6,970 
samples. A spike was defined when the ANN output was above 0.9. 

The ANN was trained with the backpropagation algorithm [Rumelhart et al 1986]. 
The weights were updated after every sample (real-time mode). A momentum term 
(a.=0.9) was used, and 0.1 was added to the sigmoid derivative to speedup learning 
[Fahlman, 1988]. The training was stopped when the test set performance decreased. 
The network typically learned in less than 50 presentations of the training set. All the 
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results presented next use the same trainingltest sets, the same learning and stop 
criterion and the same network topology. 

3 RESULTS 

Desired Signal I. 

We begin with the most commonly used desired signal for static classification, the 
hardlimited 01+ 1 signal of Figure 1 (I), but now extended in time (0 during the 
background, 1 after the occurrence of the spike). This desired signal has been shown 
to be optimal in the sense that it is a least square approximation of the Bayes decision 
rule [Makhoul, 1991 J. However it performs poorly for transient detection (73% of 
correct detections and 8% of false positives). We suspect that the problem lies in the 
different waveshapes present in the background. When an explicit 0 value is given as 
the desired signal for the background, the network has difficulties extracting common 
features to all the waves and biases the decision rule. Samples of the network input 
and the corresponding output are shown in Figure 2(1). Notice that the ANN output 
gets close to "1" during high amplitude background, and fails to be above 0.9 during 
small amplitude spikes. In Table 1, the test set performance is better than the training 
set due to the fact that the spikes chosen for training happen to include more difficult 
cases. 

Table 1. Performance Results. 

Desired Training Set Training Set Test Set Test Set 

Signal detections false positives detections false positives 

0<--> +1 38/60 = 63% 2/38 = 5% 36/49 = 73% 3/36 = 8% 

noise 54/60 = 90% 0154 = 0% 46/49 = 94% 1/47 = 2% 

prediction 50/60 = 83% 1150 = 2% 45/49 = 92% 2/45 = 4% 

Detections mean number of events in agreement between the human expert 
and the ANN (normalized by the number of spikes in the set). 

False positives mean the number of events picked by the ANN, but not considered 
spikes by the human expert (nonnalized by the number of ANN detections) 

The "random noise" desired signal is shown in Figure 1 (II). This signal consists 
simply of uniformly distributed random values bounded between -0.5 and +0.5 for 
the nonspike regions and again a value of "+ 1" after the spikes. This approach is 
based on the fact that the random number generator will have a zero mean 
distribution. Therefore, during training over the nonspike regions, the errors 
backpropagated through the network will normally average out to zero, yielding in 
practice a "don't care" target for the background. This effectively should give the 
least bias to the decision rule . The net result is that consistent training is only 
performed over the spike patterns, allowing the network to better learn these patterns 
and provide improved performance. The results of this configuration are very 
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promising, as can be seen in Table 1 and in Figure 2(11). The "noise" signal performs 
better than all of the other desired signal configurations examined (94% correct 
detections and 2% false detections). 
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Figure 2. Input and output of neural network 

The last signal configuration is the prediction paradigm. The network is performing 
one-step prediction during the nonspike portions of the signal and a saturation value 
of "+ 1" is added to the desired signal after the spike, as in Figure 1(111). The rationale 
behind such a configuration is that the desired signal is readily available and may 
require fewer network resources than a target of "0", decreasing the bias in the 
decision rule for the spike class. The results are given in Table 1, where we see a 
marked improvement over the hardlimited desired signal (92% correct detection and 
4% false positives). 

4 COMPARISON WITH MATCHED FILTER 

The template for the matched filter was formed by averaging five spikes from the 
training set. While averaging reduces morphological "crispness," it enhances the 
robustness of spike shape representation, since the spike shape is variable. The 45 
point template is correlated continuously with the time signal from the test set, hence 
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no correction to the nonwhite nature of the ECoG is being done. Performance in both 
the matched filter and the ANN approach will be dependent upon the threshold levels 
chosen for detection, which determines the receiver operating characteristic (ROC) 
for the detector, but requires large data sets to be meaningful. Table 2 shows a partial 
result, wht;~;,! bvth detectors are compared in terms of false positives for 90% 
detection rate and detection rate for 2 false positives. The results presented for the 
ANN are for the random noise desired signal. In both cases, we see the superiority of 
the ANN approach. 

Table 2. Comparison ANNlMatched filter 

90% detection rate 2 false positives 

NN MF NN MF 

o false +'s 21 false +'s 92% 13% 

5 CONCLUSIONS 

The ultimate conclusion of this experimental work is that neural networks can be 
used to implement transient detectors, outperforming the conventional matched filter 
for the detection of spike transients embedded in the ECoG. However, the difficulty 
in the ANN approach comes in how to setup the training, and the desired signal. 

Although the training was not discussed here, we would like to point several issues 
that are important. When a cost function that is sensitive to the a priori probability 
of the classes is used (as the error signal in backpropagation) the proper balance of 
background versus spike data sizes is relevant for adequate training. Our results 
show that at a low spike concentration of 4% (ratio of spike samples over background 
samples in the training set), the network never learns the waveform and always 
outputs the value chosen to represent the background. For our application, these 
problems disappear at an 18% concentration level. 

Another important issue is the selection of the class exemplars for training. Transient 
detection is a one class classification problem (A versus the universe), rather than a 
two class classification problem. It is not possible to cover appropriately the 
unconstrained background with examples, and even when a large number of 
background waves is utilized (in our case 80% of the training samples belonged to 
the background) the training produced bad results. We found out that only the waves 
similar in shape to the spikes are important to bound the spike class in feature space. 
As a solution, we included in the training set the false positives, i.e. waves that the 
system detects as spikes but the human expert classifies as background, to improve 
the detection agreement with the human [Zahalka, 1992]. 

The issues regarding the choice of the desired signal are also important. We found 
experimentally that the best desired signal for our case is the one that uses random 
noise during the background. We can not, at this point, explain this result 
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theoretically. This desired signal is also the one that uses fewer network resources (i. 
e. number of hidden units) without degrading the performance [Zahalka, 1992]. This 
result came as a surprise since the 0/1 signal has been shown to be optimal for static 
patterns in the sense that makes the classifier approximate the Bayes decision rule. 
The explanation may be simply a matter of local minima in the performance surface 
of the network trained with the 0/1 desired signal, but it may also reflect deeper 
causes. With the OIl desired signal, the network weights are updated equally with the 
information of the background waveforms and with the information regarding the 
spikes. The training paradigm should emphasize the spikes, since the spikes are the 
waves we are interested in. Moreover, since the background class is unconstrained, 
many more degrees of freedom are necessary to represent well the background. When 
not enough hidden units are available, the network biases the discriminant function, 
and the performance is poor. In the prediction paradigm the background is selected 
as the desired signal and the required number of hidden nodes to predict the next 
sample is much smaller (actually only three hidden nodes are sufficient to keep the 
reported performance [Zahalka, 1992]). The network resources naturally self 
organize as two template matching nodes and one prediction node. However, we have 
found out that the signal has to be properly normalized in the sense that the target for 
the spike ("I") must be outside the range of the input signal voltages (that is the 
reason we normalize the input signal between -1 and 0.4). From a classification point 
of view we "do not care" what the net output is provided it is far from the target of 
"1". The random noise target with zero mean achieves this goal very easily, because 
the error gradient during the background averages out to zero. Therefore the weights 
reflect primarily the information containing in the shape of the spike. We found out 
that only two hidden nodes are sufficient to keep the reported performance. [Zahalka, 
1992]. It seems that the theory of time varying signal classification with neural 
networks is not a straight forward extension of the static classification case, and 
requires further theoretical analysis. 

An implication of this work regards the role of supervised learning in biological 
neural networks. This work shows that during non-interesting events, there is no need 
to provide a target to the neural assembly (noise, which is so readily available in 
biological systems, suffices). Re-enforcement stimulus are only needed during or 
after relevant events, which is compatible with the information processing models of 
the olfactory bulb [Freeman and DiPrisco, 1989]. Therefore, looking at learning and 
adaptation in biological systems as a signal detection instead of a classification 
problem seems promising. 

Acknowledgments 

This work has been partially supported by NSF grants ECS-9208789 and DDM-
8914084. 

References 

Barlow J. S. and Dubinsky J., (1976) "Some Computer Approaches to Continuous 



Transient Signal Detection with Neural Networks: The Search for the Desired Signal 695 

Automatic Clinical EEG Monitoring," in Quantitative Analytic Studies in Epilepsy, Raven Press, 
New York, 309-327. 

Eberhart R., Dobbins R., Weber W., (1989) "Casenet: a neural network tool for EEG waveform 
classifiaction", Proc IEEE Symp. Compo Based Medical Systems, Minneapolis, 60-68, 1989. 

Fahlman S.,(1988) "Faster learning variations on backpropagation: an empirical study", Proc. 
1988 Connectionist Summer School, Morgan Kaufmann, 38-51. 

Freeman W., DiPrisco V., (1986) "EEG spatial pattern differences with discriminated odors 
manifest chaotic and limit cycle attractors in olfactory bulb of rabbits", in Brain Theory, Ed. Palm 
and Aertsen, Springer, 97-120. 

Gabor A., Seydal M., (1992) "Automated interictal EEG spike detection using artifical neural 
networks", Electroenc. Clin. Neurophysiol., (83),271-280. 

Makhoul J., (1991) "Pattern recognition properties of neural networks" ,Proc. 1991 IEEE 
Workshop Neural Net. in Sig. Proc., 173-187, Princeton. 

Pola P. and Romagnoly 0., (1979) "Automatic analysis of interictal epileptic activity related to its 
morphological aspects", Electroenceph. Clin. Neurophysiol., #46, 227-231. 

Rumelhart,D.E., Hinton,G.E. and Williams,R.J. (1986) "Learning internal representations by 
error propagation. in Parallel Distributed Processing (Rumelhart, McClelland, eds.), ch. 8, 
Cambridge, MA. 

Thomas J., (1969) "An Introduction to statistical Communication Theory", Wiley. 

Watrous R., Ladendorf B., Kuhn G., (1990) "Complete gradient optimization of a recurrent 
network applied to b,d,g discrimination", 1. Acoust. Soc. Am. 87 (3), 1301-1309. 

Werbos, P.J. (1990) "Backpropagation through time: what it does and how to do it", Proc. IEEE, 
vol 78, nolO, 1550-1560. 

Williams,R.J. and Zipser, D. (1989) "A learning algorithm for continually running fully recurrent 
neural networks. in Neural Computation, vol. 1 (2). 

Unikrishnan K., Hopfield J., Tank D., (1991) "Connected-Digit Speaker-dependent speech 
recognition using a neural network with time delayed connections", IEEE Trans. Sig Proc., vol 
39, #3, 698-713. 

Zalahka A., (1992) "Signal detection with neural networks: an application to the recognition of 
epileptic spikes", Master Thesis, University of FLorida. 


