
An Object-Oriented Framework for the
Simulation of Neural Nets

A. Linden Th. Sudbrak Ch. Tietz F. Weber
German National Research Center for Computer Science

D-5205 Sankt Augustin 1, Germany

Abstract

The field of software simulators for neural networks has been ex­
panding very rapidly in the last years but their importance is still
being underestimated. They must provide increasing levels of as­
sistance for the design, simulation and analysis of neural networks.
With our object-oriented framework (SESAME) we intend to show
that very high degrees of transparency, manageability and flexibil­
ity for complex experiments can be obtained. SESAME's basic de­
sign philosophy is inspired by the natural way in which researchers
explain their computational models. Experiments are performed
with networks of building blocks, which can be extended very eas­
ily. Mechanisms have been integrated to facilitate the construction
and analysis of very complex architectures. Among these mech­
anisms are t.he automatic configuration of building blocks for an
experiment and multiple inheritance at run-time.

1 Introduction

In recent years a lot of work has been put into the development of simulation
systems for neural networks [1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12]. Unfortunately their
importance has been largely underestimated. In future, software environments will
provide increasing It-vels of assistance for the design, simulation and analysis of
neural networks as well as for other pattern and signal processing architectures. Yet
large improvements are still necessary in order to fulfill the growing demands of the
research community. Despite the existence of at least 100 software simulators, only
very few of them can deal with, e. g. multiple learning paradigms and applications,

797

798 Linden, Sudbrak, Tietz, and Weber

very large experiments.

In this paper we describe an object oriented framework for the simulation of neural
networks and try to illustrate its flexibility, transparency and extendability. The
prototype called SESAME has been implemented using C++ (on UNIX workstations
running X-Windows) and currently consists of about 39.000 lines of code, imple­
menting over 80 classes for neural network algorithms, pattern handling, graphical
output and other utilities.

2 Philosophy of Design

The main objective of SESAME is to allow for arbitrary combinations of different
learning and pattern processing paradigms (e. g. supervised, unsupervised, self­
supervised or reinforcement learning) and different application domains (e. g. pat­
tern recognition, vision, speech or control). To some degree the design of SESAME
has been based on the observation that many researchers explain their neural in­
formation processing systems (NIPS) with block-diagrams. Such a block diagram
consists of a group of primitive elements (building blocks). Each building block has
inputs and outputs and a functional relationship between them. Connections de­
scribe the flow of data between the building blocks. Scripts related to the building
blocks specify the flow of control. Complex NIPS are constructed from a library
of building blocks (possibly themselves whole NIPS), which are interconnected via
uniform communication links.

3 SESAME Design and Features

All building blocks share a list of common components. They all have insites and
outsites that build the endpoints of communication links. Datafields contain the
data (e. g. weight matrices or activation vectors) which is sent over the links. Ac­
tion functions process input from the insites, update the internal state and compute
appropriate outputs, e. g. performing weight updates and propagating activation or
error vectors. Command functions provide a uniform user interface for all build­
ing blocks. Scripts control the execution of action or command functions or other
script.s. They may contain conditional statements and loops as control structures.
Furthermore a symbol table allows run-time access to parameters of the building
hlock as learning rat.E's, sizes, data ranges etc. Many other internal data struc­
tures and routines are provided for the administration and maintainance of building
blocks.

The description of an experiment may be divided into the functional description
of the building blocks (which can be done either in C++ or in the high-level de­
scription language, see below), the connection topology of the building blocks used,
the cont.rol flow defined by scripts and a set of parameters for each of the building
blocks.

An Object-Oriented Framework for the Simulation of Neural Nets 799

Design Highlights

3.1 User Interface

The user interface is text oriented and may be used interactively as well as script
driven. This implies that any command that the user may choose interactively can
also be used in a command file that is called non-interactively. This allows the easy
adaption of arbitrary user interface structures from a primitive batch interface for
large offline simulatiors to a fancy graphical user interface for online experiments.

Another consequence is that experiments are specified in the same command lan­
guage that is used for the user interface. The user may thus easily switch from
description files from previously saved experiments to the interactive manipulation
of already loaded ones. Since the complete structure of an experiment is accessible
at runtime, this not only means manipulation of parameters but also includes any
imaginable modification of the experiment topology. The experienced user can, for
example, include new building blocks for experiment observation or statistical eval­
uation and connect them to any point of the communication structure. Deletion of
building blocks is possible, as well as modifying control scripts. The complete state
of the experiment (i. e. the current values of all relevant data) can be saved for later
experiments.

3.2 Hierarchies

In SESAME we distinguish two kinds of building blocks: terminal and non-terminal
blocks. Non-terminal building blocks are used to structure a complex experiment
into hierarchies of abstract building blocks containing substructures of an experi­
ment that may themselves contain hierarchies of substructures. Terminal building
blocks provide the data structures and primitive functions that are used in scripts
(of non-terminal blocks) to compose the network algorithms. A non-terminal build­
ing block hides its internal structure and provides abstract sites and scripts as an
interface to its internals. Therefore it appears as a terminal building block to the
outside and may be used as such for the construction of an experiment. This con­
struction is equivalent. to the building of a single non-terminal building block (the
Experiment) that encloses the complete experiment structure.

3.3 Construction of New Building Blocks

The functionality of SESAME can be extended using two different approaches. New
terminal building blocks can be programmed deriving from existing C++ classes or
new non-terminal building blocks may be assembled by using previously defined
building blocks:

3.3.1 Programming New Terminal Building Blocks

Terminal building blocks can be designed by derivation from already existing C++
classes. The complete administration structure and possible predefined properties
are inherited from the parent classes. In order to add new properties - e. g. new
action functions, symbols, datafields, insites or outsites - a set of basic opera­
tions is being provided by the framework. One should note that new algorithms

800 Linden, Sudbrak, Tietz, and Weber

and structures can be added to a class without any changes to the framework of
SESAME.

3.3.2 Composing New Non-Terminal Building Blocks

Non-terminal building blocks can be combined from libraries of already designed
terminal or non-terminal blocks. See for an example fig. ??, where a set of building
blocks build a multilayer net which can be collapsed into one building block and
reused in other contexts. Here insites and outsites define an interface between
building blocks on adjacent levels of the experiment hierarchy. The flow of data
inside the new building block is controlled by scripts that call action functions or
scripts of its components. Such an abstract building block may be saved in a library
for reuse. Even whole experiments can be collapsed to one building block leaving
a lot of possibilities for the experimenter to cope with very large and complicated
experiments.

3.3.3 Deriving New Non-Terminal Building Blocks

A powerful mechanism for organizing very complex experiments and allowing high
degrees of flexibility and reuse is offered by the concept of inheritance. The basic
mechanism executes the description of the parent building block and thereafter
the description of the refinements for the derived block. All this may be done
interactively, thus additional refinements can be added at runtime. Even the set of
formal parameters of a block may be inherited and/or refined. Multiple inheritance
is also possible.

For an example consider a general function approximator which may be used at
many points in a more complex architecture. It can be implemented as an abstract
base building block, only supplying basic structure as input and output and basic
operations as ((propagate input" and ((train" . Derivations of it then implement the
algorithm and structure actually used. Statistical routines, visualization facilities,
pattern handling and other utilities can be added as further specializations to a
basic function approximator.

3.3.4 Parameters and Generic Building Blocks

A building block may also define formal parameters that allow the user to con­
figure it at the time of its instantiation or inclusion into some other non-terminal
building block. Thus non-terminal building blocks can be generic. They may be
parameterized with types for interior building blocks, names of scripts etc. With
this mechanism a multilayer net can be created with an arbitrary type of node or
weight layers.

3.4 Autoconfiguration

When a user defines an experiment, only parameters that are really important
must be specified. Redundant parameters, that depend on other paremeters of other
building blocks, can often be determined automatically. In SESAME this is done via
a constraint satisfaction process. Not only does this mechanism avoid specification
of redundant information and check experiment parameters for consistency, but it

An Object-Oriented Framework for the Simulation of Neural Nets 801

also enables the construction of generic structures. Communication links between
outsites and insites of building blocks check data for matching types. Building blocks
impose additional constraints on the data formats of their own sites. Constraints are
formed upon information about the base types, dimensions, sizes and ranges of the
data sent between the sites. The primary source of information are the parameters
given to the building blocks at the time of their instantiation. After building the
whole experiment, a propagation mechanism iteratively tries to complete missing
information in order to satisfy all constraints. Thus information which is determined
in one building block of the experiment may spread all over the experiment topology.
As an example one can think of a building block which loads patterns from a
file. The dimensionality of these patterns may be used automatically to configure
building blocks holding weight layers for a multilayer network.

This autoconfiguration can be considered as finding the unique solution of set of
equations where three cases may occur: inconsistency (contradiction between two
information sources at one site), deadlock (insufficient information for a site) or suc­
cess (unique solution). Inconsistencies are a proof of an erroneous design. Deadlocks
indicate that the user has missed something.

3.5 Experiment Observation

Graphical output, file I/O or statistical analysis are usually not performed within
the normal building blocks which comprise the network algorithms. These features
are built into specialized utility building blocks that can be integrated at any point
of the experiment topology, even during experiment runs.

4 Classes of Building Blocks

SESAME supports a rich taxonomy of building blocks for experiment construction:

For neural networks one can use building blocks for complete node and weight layers
to construct multilayer networks. This granulation was chosen to allow for a more
efficient way of computation than with building blocks that contain single neurons
only. This level of abstraction still captures enough flexibility for many paradigms
,of NIPS. However, terminal building blocks for complete classes of neural nets are
also provided if efficiency is first demand.

Mathematical building blocks perform arithmetic, trigonometric or more general
mathematical transformations, as scaling and normalization. Building blocks for
coding provide functionality to encode or decode patterns.

Utility building blocks provide access to the filesystem, where not only input or
output files can be dealt with but also other UNIX processes by means of pipes.
Others simply store structured or unstructured patterns to make them randomly
accessible.

Graphical building blocks can be used to display any kind of data no matter if
weight matrices, activation or error vectors are involved. This is a consequence of
the abstract view of combining building blocks with different functionality but a
uniform data interface. There are special building blocks for analysis which allow
for clustering, averaging, error analysis, plotting and other statistical evaluations.

802 Linden, Sudbrak, Tietz, and Weber

Finally simulations (cart pole, robot-arms etc.) can also be incorporated into build­
ing blocks. Real-world applications or other software packages can be accessed via
specialized interface blocks.

5 Examples

Some illustrative examples for experiments can be found in [?] and many additional
and more complex examples in the SESAME documentation. The full documenta­
tion as well as the software are available via ftp (see below).

Here we sketch only briefly, how paradigms and applications from different domains
can be easily glued together as a natural consequence of the design of SESAME.
Figure?? shows part of an experiment in which a robot arm is controlled via
a modified Kohonen feature map and a potential field path planner. The three
building blocks, workspace, map and planner form the main part of the experiment.
Workspace contains the simulation for the controlled robot arm and its graphical
display and map contains the feature map that is used to transform the map coordi­
nates proposed by planner to robot arm configurations. The map has been trained
in another experiment to map the configuration space of the robot arm and the
planner may have stored the positions of obstacles with respect to the map coordi­
nates in still another experiment. The configuration and obstacle map have been
saved as the results of the earlier experiments and are reused here. The map was
taken from a library that contains different flavors of feature maps in form of non­
terminal building blocks and hides the details of its complicated inner structure.
The Views help to visualize the experiment and the Buffers are used to provide
start values for the experiment runs. A Subtractor is shown that generates control
inputs for the workspace by simply performing vector subtraction on subsequently
proposed state vectors for the robot arm simulation.

6 Epilogue

We designed an object-oriented neural network simulator to cope with the increas­
ing demands imposed by the current lines of research. Our implementation offers
a high degree of flexibility for the experimental setup. Building blocks may be
combined to build complex experiments in short development cycles. The simula­
tor framework provides mechanisms to detect errors in the experiment setup and
to provide parameters for generic subexperiments. A prototype was built, that is
in use as our main research tool for neural network experiments and is constantly
refined. Future developments are still necessary, e. g. to provide a graphical in­
terface and more elegant mechanisms for the reuse of predefined building blocks.
Further research issues are the parallelization of SESAME and the compilation of
experiment parts to optimize their performance.

The software and its preliminary documentation can be obtained via ftp at
:ftp.gmd.de in the directory gmd/as/sesame . Unfortunately we cannot provide
professional support at this moment.

Acknowledgments go to the numerous programmers and users of SESAME for all
t.he work, valuable discussions and hints.

An Object-Oriented Framework for the Simulation of Neural Nets 803

References

[1] B. Angeniol and P. '"rreleaven. The PYGMALION neural network programming
environment. In R. Eckmiller, editor, Advanced Neural Computers, pages 167
- 175, Amsterdam, 1990. Elsevier Science Publishers B. V. (North-Holland).

[2] N. Goddard, K. Lynne, T. Mintz, and 1. Bukys. Rochester connectionist simu­
lator. Technical Report TR-233 (revised), Computer Science Dept, University
of Rochester, 1989.

[3] G. 1. Heileman, H. K. Brown, and Georgiopoulos. Simulation of artificial neural
network models using an object-oriented software paradigm. In Proceedings of
the International Joint Conference on Neural Networks, pages 11-133 - 11-136,
Washington, DC, 1990.

[4] NeuralWare Inc. Neuralworks professional ii user manual. 1989.

[5] T. T. Kraft. AN Spec tutorial workbook. San Diego, CA, 1990.

[6] T. Lange, J .B. Hodges, M. Fuenmayor, and L. Belyaev. Descartes: Develop­
ment environment for simulating hybrid connectionist architectures. In Pro­
ceedings of the Eleventh A nnual Conference of the Cognitive Science Society,
Ann Arbor, MI, August 1989, 1989.

[7] A. Linden and C. Tietz. Combining mUltiple neural network paradigms and ap­
plications using SESAME. In Proceedings of the Internation Joint Conference
on Neural Networks IJCNN - Baltimore. IEEE, 1992.

[8] Y. Miyata. A user's guide to Sun Net version 5.6 - a tool for constructing,
running, and looking into a PDP network. 1990.

[9] J. M. J. Murre and S. E. Kleynenberg. The MetaNet network environment
for the development of modular neural networks. In Proceedings of the In­
ternational Neural Network Conference, Paris, 1990, pages 717 - 720. IEEE,
1990.

[10] M.A. Wilson, S.B. Upinder, J.D. Uhley, and J.M. Bower. GENESIS: A system
for simulating neural networks. In David S. Touretzky, editor, Advances in
Neural Information Processing Systems I, pages 485-492. Morgan Kaufmann,
1988. Collected papers of the IEEE Conference on Neural Information Pro­
cessing Systems - Natural and Synthetic, Denver, CO, November 1988.

[11] A. ZeIl, N. Mache, T. Sommer, and T. Korb. Recent developments of the snns
neural network simulator. In SPIE Conference on Applications of Artificial
Neural Networks. Universit"at Stuttgart, April 1991.

804 Linden, Sudbrak, Tietz, and Weber

1

............

tet
: :

.. : .
uu.a f: '
0 :: '

.PN
1IIcI ••

Bl'Lleu
IIWape.

B
all ... ::

.:;.'

: : . .

Nt Nt

. ~;
':;.;. ...

---1
• Nt

"' Sea_Is
d.,.1s

I ..

.. I

Figure 1: Integration of several terminal building blocks into a non-terminal building
block with the Backpropagation example.

L~ I"""" loaIID I t*!MapO"
SUb.,...,...~b

,leldPlaa
inJliD2 ,..a ...

T
~ ."IIB1a I .weOu! .atPo.Out j ' I ctP .. Ja

I ooatrolIa I-- L

TwoA VIcw: :

wert...- •• rr., ow ,.,
.alrcr

ow .lIIr1aNlr
I 10lIIla

t
~

I8fennal ia2
rcul&!u_vj4,9,

oIIltm.p p; ...
l~rOu! -

DotIbieMap
•• p W.I wID I iDdea Plal.Vlew

Figure 2: Robot arm control with a hybrid controller

