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Abstract 

The field of software simulators for neural networks has been ex­
panding very rapidly in the last years but their importance is still 
being underestimated. They must provide increasing levels of as­
sistance for the design, simulation and analysis of neural networks. 
With our object-oriented framework (SESAME) we intend to show 
that very high degrees of transparency, manageability and flexibil­
ity for complex experiments can be obtained. SESAME's basic de­
sign philosophy is inspired by the natural way in which researchers 
explain their computational models. Experiments are performed 
with networks of building blocks, which can be extended very eas­
ily. Mechanisms have been integrated to facilitate the construction 
and analysis of very complex architectures. Among these mech­
anisms are t.he automatic configuration of building blocks for an 
experiment and multiple inheritance at run-time. 

1 Introduction 

In recent years a lot of work has been put into the development of simulation 
systems for neural networks [1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12]. Unfortunately their 
importance has been largely underestimated. In future, software environments will 
provide increasing It-vels of assistance for the design, simulation and analysis of 
neural networks as well as for other pattern and signal processing architectures. Yet 
large improvements are still necessary in order to fulfill the growing demands of the 
research community. Despite the existence of at least 100 software simulators, only 
very few of them can deal with, e. g. multiple learning paradigms and applications, 
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very large experiments. 

In this paper we describe an object oriented framework for the simulation of neural 
networks and try to illustrate its flexibility, transparency and extendability. The 
prototype called SESAME has been implemented using C++ (on UNIX workstations 
running X-Windows) and currently consists of about 39.000 lines of code, imple­
menting over 80 classes for neural network algorithms, pattern handling, graphical 
output and other utilities. 

2 Philosophy of Design 

The main objective of SESAME is to allow for arbitrary combinations of different 
learning and pattern processing paradigms (e. g. supervised, unsupervised, self­
supervised or reinforcement learning) and different application domains (e. g. pat­
tern recognition, vision, speech or control). To some degree the design of SESAME 
has been based on the observation that many researchers explain their neural in­
formation processing systems (NIPS) with block-diagrams. Such a block diagram 
consists of a group of primitive elements (building blocks). Each building block has 
inputs and outputs and a functional relationship between them. Connections de­
scribe the flow of data between the building blocks. Scripts related to the building 
blocks specify the flow of control. Complex NIPS are constructed from a library 
of building blocks (possibly themselves whole NIPS), which are interconnected via 
uniform communication links. 

3 SESAME Design and Features 

All building blocks share a list of common components. They all have insites and 
outsites that build the endpoints of communication links. Datafields contain the 
data (e. g. weight matrices or activation vectors) which is sent over the links. Ac­
tion functions process input from the insites, update the internal state and compute 
appropriate outputs, e. g. performing weight updates and propagating activation or 
error vectors. Command functions provide a uniform user interface for all build­
ing blocks. Scripts control the execution of action or command functions or other 
script.s. They may contain conditional statements and loops as control structures. 
Furthermore a symbol table allows run-time access to parameters of the building 
hlock as learning rat.E's, sizes, data ranges etc. Many other internal data struc­
tures and routines are provided for the administration and maintainance of building 
blocks. 

The description of an experiment may be divided into the functional description 
of the building blocks (which can be done either in C++ or in the high-level de­
scription language, see below), the connection topology of the building blocks used, 
the cont.rol flow defined by scripts and a set of parameters for each of the building 
blocks. 
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Design Highlights 

3.1 User Interface 

The user interface is text oriented and may be used interactively as well as script 
driven. This implies that any command that the user may choose interactively can 
also be used in a command file that is called non-interactively. This allows the easy 
adaption of arbitrary user interface structures from a primitive batch interface for 
large offline simulatiors to a fancy graphical user interface for online experiments. 

Another consequence is that experiments are specified in the same command lan­
guage that is used for the user interface. The user may thus easily switch from 
description files from previously saved experiments to the interactive manipulation 
of already loaded ones. Since the complete structure of an experiment is accessible 
at runtime, this not only means manipulation of parameters but also includes any 
imaginable modification of the experiment topology. The experienced user can, for 
example, include new building blocks for experiment observation or statistical eval­
uation and connect them to any point of the communication structure. Deletion of 
building blocks is possible, as well as modifying control scripts. The complete state 
of the experiment (i. e. the current values of all relevant data) can be saved for later 
experiments. 

3.2 Hierarchies 

In SESAME we distinguish two kinds of building blocks: terminal and non-terminal 
blocks. Non-terminal building blocks are used to structure a complex experiment 
into hierarchies of abstract building blocks containing substructures of an experi­
ment that may themselves contain hierarchies of substructures. Terminal building 
blocks provide the data structures and primitive functions that are used in scripts 
(of non-terminal blocks) to compose the network algorithms. A non-terminal build­
ing block hides its internal structure and provides abstract sites and scripts as an 
interface to its internals. Therefore it appears as a terminal building block to the 
outside and may be used as such for the construction of an experiment. This con­
struction is equivalent. to the building of a single non-terminal building block (the 
Experiment) that encloses the complete experiment structure. 

3.3 Construction of New Building Blocks 

The functionality of SESAME can be extended using two different approaches. New 
terminal building blocks can be programmed deriving from existing C++ classes or 
new non-terminal building blocks may be assembled by using previously defined 
building blocks: 

3.3.1 Programming New Terminal Building Blocks 

Terminal building blocks can be designed by derivation from already existing C++ 
classes. The complete administration structure and possible predefined properties 
are inherited from the parent classes. In order to add new properties - e. g. new 
action functions, symbols, datafields, insites or outsites - a set of basic opera­
tions is being provided by the framework. One should note that new algorithms 
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and structures can be added to a class without any changes to the framework of 
SESAME. 

3.3.2 Composing New Non-Terminal Building Blocks 

Non-terminal building blocks can be combined from libraries of already designed 
terminal or non-terminal blocks. See for an example fig. ??, where a set of building 
blocks build a multilayer net which can be collapsed into one building block and 
reused in other contexts. Here insites and outsites define an interface between 
building blocks on adjacent levels of the experiment hierarchy. The flow of data 
inside the new building block is controlled by scripts that call action functions or 
scripts of its components. Such an abstract building block may be saved in a library 
for reuse. Even whole experiments can be collapsed to one building block leaving 
a lot of possibilities for the experimenter to cope with very large and complicated 
experiments. 

3.3.3 Deriving New Non-Terminal Building Blocks 

A powerful mechanism for organizing very complex experiments and allowing high 
degrees of flexibility and reuse is offered by the concept of inheritance. The basic 
mechanism executes the description of the parent building block and thereafter 
the description of the refinements for the derived block. All this may be done 
interactively, thus additional refinements can be added at runtime. Even the set of 
formal parameters of a block may be inherited and/or refined. Multiple inheritance 
is also possible. 

For an example consider a general function approximator which may be used at 
many points in a more complex architecture. It can be implemented as an abstract 
base building block, only supplying basic structure as input and output and basic 
operations as ((propagate input" and ((train" . Derivations of it then implement the 
algorithm and structure actually used. Statistical routines, visualization facilities, 
pattern handling and other utilities can be added as further specializations to a 
basic function approximator. 

3.3.4 Parameters and Generic Building Blocks 

A building block may also define formal parameters that allow the user to con­
figure it at the time of its instantiation or inclusion into some other non-terminal 
building block. Thus non-terminal building blocks can be generic. They may be 
parameterized with types for interior building blocks, names of scripts etc. With 
this mechanism a multilayer net can be created with an arbitrary type of node or 
weight layers. 

3.4 Autoconfiguration 

When a user defines an experiment, only parameters that are really important 
must be specified. Redundant parameters, that depend on other paremeters of other 
building blocks, can often be determined automatically. In SESAME this is done via 
a constraint satisfaction process. Not only does this mechanism avoid specification 
of redundant information and check experiment parameters for consistency, but it 
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also enables the construction of generic structures. Communication links between 
outsites and insites of building blocks check data for matching types. Building blocks 
impose additional constraints on the data formats of their own sites. Constraints are 
formed upon information about the base types, dimensions, sizes and ranges of the 
data sent between the sites. The primary source of information are the parameters 
given to the building blocks at the time of their instantiation. After building the 
whole experiment, a propagation mechanism iteratively tries to complete missing 
information in order to satisfy all constraints. Thus information which is determined 
in one building block of the experiment may spread all over the experiment topology. 
As an example one can think of a building block which loads patterns from a 
file. The dimensionality of these patterns may be used automatically to configure 
building blocks holding weight layers for a multilayer network. 

This autoconfiguration can be considered as finding the unique solution of set of 
equations where three cases may occur: inconsistency (contradiction between two 
information sources at one site), deadlock (insufficient information for a site) or suc­
cess (unique solution). Inconsistencies are a proof of an erroneous design. Deadlocks 
indicate that the user has missed something. 

3.5 Experiment Observation 

Graphical output, file I/O or statistical analysis are usually not performed within 
the normal building blocks which comprise the network algorithms. These features 
are built into specialized utility building blocks that can be integrated at any point 
of the experiment topology, even during experiment runs. 

4 Classes of Building Blocks 

SESAME supports a rich taxonomy of building blocks for experiment construction: 

For neural networks one can use building blocks for complete node and weight layers 
to construct multilayer networks. This granulation was chosen to allow for a more 
efficient way of computation than with building blocks that contain single neurons 
only. This level of abstraction still captures enough flexibility for many paradigms 
,of NIPS. However, terminal building blocks for complete classes of neural nets are 
also provided if efficiency is first demand. 

Mathematical building blocks perform arithmetic, trigonometric or more general 
mathematical transformations, as scaling and normalization. Building blocks for 
coding provide functionality to encode or decode patterns. 

Utility building blocks provide access to the filesystem, where not only input or 
output files can be dealt with but also other UNIX processes by means of pipes. 
Others simply store structured or unstructured patterns to make them randomly 
accessible. 

Graphical building blocks can be used to display any kind of data no matter if 
weight matrices, activation or error vectors are involved. This is a consequence of 
the abstract view of combining building blocks with different functionality but a 
uniform data interface. There are special building blocks for analysis which allow 
for clustering, averaging, error analysis, plotting and other statistical evaluations. 
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Finally simulations (cart pole, robot-arms etc.) can also be incorporated into build­
ing blocks. Real-world applications or other software packages can be accessed via 
specialized interface blocks. 

5 Examples 

Some illustrative examples for experiments can be found in [?] and many additional 
and more complex examples in the SESAME documentation. The full documenta­
tion as well as the software are available via ftp (see below). 

Here we sketch only briefly, how paradigms and applications from different domains 
can be easily glued together as a natural consequence of the design of SESAME. 
Figure?? shows part of an experiment in which a robot arm is controlled via 
a modified Kohonen feature map and a potential field path planner. The three 
building blocks, workspace, map and planner form the main part of the experiment. 
Workspace contains the simulation for the controlled robot arm and its graphical 
display and map contains the feature map that is used to transform the map coordi­
nates proposed by planner to robot arm configurations. The map has been trained 
in another experiment to map the configuration space of the robot arm and the 
planner may have stored the positions of obstacles with respect to the map coordi­
nates in still another experiment. The configuration and obstacle map have been 
saved as the results of the earlier experiments and are reused here. The map was 
taken from a library that contains different flavors of feature maps in form of non­
terminal building blocks and hides the details of its complicated inner structure. 
The Views help to visualize the experiment and the Buffers are used to provide 
start values for the experiment runs. A Subtractor is shown that generates control 
inputs for the workspace by simply performing vector subtraction on subsequently 
proposed state vectors for the robot arm simulation. 

6 Epilogue 

We designed an object-oriented neural network simulator to cope with the increas­
ing demands imposed by the current lines of research. Our implementation offers 
a high degree of flexibility for the experimental setup. Building blocks may be 
combined to build complex experiments in short development cycles. The simula­
tor framework provides mechanisms to detect errors in the experiment setup and 
to provide parameters for generic subexperiments. A prototype was built, that is 
in use as our main research tool for neural network experiments and is constantly 
refined. Future developments are still necessary, e. g. to provide a graphical in­
terface and more elegant mechanisms for the reuse of predefined building blocks. 
Further research issues are the parallelization of SESAME and the compilation of 
experiment parts to optimize their performance. 

The software and its preliminary documentation can be obtained via ftp at 
:ftp.gmd.de in the directory gmd/as/sesame . Unfortunately we cannot provide 
professional support at this moment. 

Acknowledgments go to the numerous programmers and users of SESAME for all 
t.he work, valuable discussions and hints. 
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Figure 1: Integration of several terminal building blocks into a non-terminal building 
block with the Backpropagation example. 
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Figure 2: Robot arm control with a hybrid controller 


