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Abstract 
Channel equalization problem is an important problem in high-speed 
communications. The sequences of symbols transmitted are distorted by 
neighboring symbols. Traditionally, the channel equalization problem is 
considered as a channel-inversion operation. One problem of this 
approach is that there is no direct correspondence between error proba­
bility and residual error produced by the channel inversion operation. In 
this paper, the optimal equalizer design is formulated as a classification 
problem. The optimal classifier can be constructed by Bayes decision 
rule. In general it is nonlinear. An efficient hybrid linear/nonlinear 
equalizer approach has been proposed to train the equalizer. The error 
probability of new linear/nonlinear equalizer has been shown to be bet­
ter than a linear equalizer in an experimental channel. 

1 INTRODUCTION 

In a typical communication system, a sequence of symbols {ld are transmitted though a 
linear time-dispersive channel h(t). Let x(t) be the received signal, it can be written as 

x (t) = L/jh (t-n1) + W (I) 
j (1) 

where h(t) denotes the elementary pulse waveform, and wet) represents the random noise 
with iid Gaussian distribution. In a Quadrature Amplitude Modulation (QAM), symbols 
(Id are represented by complex numbers. During the transmission, interferences from 
neighboring symbols may distort the received signals. It is called Intersymbol Interference 
(lSI). It mainly because following reasons: nonideal channel which introduces phase or 
amplitude distortions, phase jitter, and impulse noise. Thus, equalization techniques are 
used to reduce the lSI. 
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2 ADAPTIVE LINEAR/RADIAL BASIS FUNCTION APPROACH 
TO EQUALIZER DESIGN 

Traditionally, the channel equalization problem is considered as a channel-inversion oper­
ation. The idea is that an equalizer is constructed as to undo the interference from neigh­
boring symbols as they passing through a linear dispersive channel. It can be used to 
explain different equalizer structures (Zero-forcing, Least mean square, and decision feed­
back) and their performance [Proakis, 1989]. One problem of this approach is that in gen­
eral there is no direct correspondence between error probability and residual error 
produced by the channel inversion operation. In [Gibson, etal, 1991], authors proposed a 
classification viewpoint for the equalizer design. They suggested that the optimal equal­
izer should be a classifier whose decision boundary is constructed according to Bayes 
decision rule. Compared with the channel inversion approach, the outputs of receiver are 
used as features for a classifier. The decision is made solely based on the classifier output, 
hence, on feature distribution. As it is well-known in [Fukunaga, 1978], the optimal deci­
sion boundaries can rapidly be computed if the features are Gaussian distributed. How­
ever, there is no idea about the structure of the optimal equalizer (classifier)for time­
dispersive channel outputs. In next section, we prove that for a linear channel, the optimal 
equalizer is nonlinear. 

2.1 THE OPTIMAL EQUALIZER OF A LINEAR TIME-DISPERSIVE CHANNEL 

Let us first consider a two-value equalization problem. Symbols with two possible values 
( -1, I) are transmitted. Let the channel be represented in a discrete form as a FIR of (hi), 
i=O,N-l. The output Xi can be written as 

N-l 
X· = ~ I . . h .+w . , L '-I I , 

j=o 

(2) 

The optimal equalizer design is equivalent to the following Bayes decision problem. 
Given (xi}, decide Ii by 

1 
/. = { 
, -1 if P(lj=-II X j,xj+l'·····,xi+N-l) >P(lj= lI X j,xj+l'·····,xj+N-l) 

(3) 

where P (lj = 11 xi,xi + 1 , ••.•. ,xi+N-l) is the posterior probability of the transmitted symbol 
Ii being 1 given channel output (xd. 

By Bayes theorem, expression(3) can be expanded to the following form: 

(4) 

i+N-l 

IT L P(xjl Ii = 1,···Jj _ N+ 1 = ki - N+ 1) P(lj = 1, ... J j - N+ 1 = kj _ N+ 1) 
j = j kl' k;z •.... ,kj _ N + I e {I. -1 } 

(5) 
Since conditional probability P (xii I j = 1, ... J j -N + 1 = kj _ N + 1) in (5) is a Gaussian distri­
bution, the numerator in (5) is a mixture of Gaussian distribution. Plugging (5) into (3), 
Bayes decision rule determines the optimal decision boundary as the solution of eqUality. 
Since denominator is the same on both sides, it can be ignored. Rearranging the equation, 
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it can be written as summation of exponential functions. The solution of this equation is 
nonlinear function of {xil. In general, no analytical form can be found. However, it can be 
solved by numerical methods. Thus, the optimal decision boundary can be determined. 
The result can be extended to multi-class problems. 

Based on the result established above, we provide a theoretical justification of a nonlinear 
equalizer approach to linear time-dispersive channel. The theoretical comparison of per­
formances of linear and optimal equalizers can be found in [Gibson, et.al, 1991]. They 
concluded that performance of linear equalizers can not be improved by increasing tap 
length. This also suggests that a nonlinear equalizer approach is necessary. Another reason 
for nonlinear equalization approach is due to channels with spectrum hulls [Proakis, 
1989]. In this case, the linear equalizer can not achieve the desired performance due to 
"noise enhancement". 

2.2 NONLINEAR EQUALIZER DESIGN PROBLEM 

There are several approaches to nonlinear equalizer design. To reduce the Least Mean 
Square (LMS) error, Voterra-series approach uses high-order product terms of input as 
new features. The tree-structured linear equalizer method [Gelfand, et.al., 1991] partitions 
the feature-space, and makes a piecewise linear approximation to the optimal nonlinear 
equalizer. As reported in [Gelfand, et.al., 1991], the tree-structured linear equalizer 
approach provides reasonable fast convergence and lower error probability as compared 
with linear and Voterra series approaches. The problem of this approach is that a lot of 
training samples are needed to achieve good performance. A neural network approach, 
MultiLayer Perceptron(MLP) [Gibson, et.al, 1991], trains 3 or 4 layers interconnected 
Perceptrons to form the nonlinear decision boundary. It is observed in [Gibson, et.al, 
1991] that the performance of a MLP equalizer is close to optimal Bayes classifier. How­
ever, the training time is long and a fine-turing procedure is used. A nonlinear equalizer 
approach using radial basis functions is also reponed in [Chen, et.al., 1991]. 

To put equalizers into use, the long training time is unpractical, and a fine-adjusting proce­
dure is not allowed. Hence, it is desired to have an efficient, automatic procedure for non­
linear equalize design. To achieve this goal, we propose a hybrid linear and radial basis 
functions approach for automatic nonlinear equalizer design. 

Although the optimal equalizer should be nonlinear, all these nonlinear design methods 
require long training time or large amount of training samples. Linear equalizers are not 
optimal, but with following advantages: easy training, fast convergence. It is also reported 
that the linear equalizer is relatively robust [Fukunaga, 1978]. Hence, it is desirable to 
combine the advantages of both linear and nonlinear equalizers. However, the hybrid 
structure should provide desired properties: fast convergence, automatic training proce­
dure, and low error rate. To satisfy these constraints, we propose a feature-space partition­
ing approach to hybrid equalizer design. 

2.3 FEATURE·SPACE PARTITIONING APPROACH TO HYBRID EQUALIZER 
DESIGN 

To design a hybrid linear/nonlinear equalizer, we adopt the feature-space partitioning con­
cept. The idea is similar to the one developed in [Gelfand, et.al, 1991]. Here, we consider 
a partitioning method based on geometrical reasoning for eqUalization problems. The idea 
is based on the fact that linear equalizers can recover distorted signals, except the cases 
when strong noise push samples into boundaries where two classes overlaid with each 
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other. We consider the "confused" samples as these samples near decision boundaries. The 
separation of "confused" samples can be accomplished based on the output values of lin­
ear equalizers. If the distance between output value and the closest point in signal constel­
lation [Proakis, 1989] is greater than a threshold, then we consider current sample is 
"confused". This means that the sample is the one close to decision boundary. To achieve 
an accurate classification, we classify it by a nonlinear equalizer, which is constructed for 
separating the samples near Bayes decision boundary. 

The hybrid structure consisted of a linear equalizer, followed by a radial basis function 
(RBS) network, as shown in Fig. 1. A RBS network (Fig.2) is a two-layered network with 
radial_basis_function nodes in first layer, and a weighted linear combination of outputs of 
these nodes. 

Each feature vector consisted of a collection of consecutive data from the channel. It is 
assumed that these data are properly time and carrier synchronized [Proakis, 1989]. For 
the QAM, a complex-valued linear equalizer is adopted. The distance between output 
value of linear equalizer and the closest point is then computed and compared with thresh­
old as described before. The "confused" samples are classified by a nonlinear RBS equal­
izer. The output of a RBS network can be written as weighted summation of outputs of 
nodes as follows: 

(6) 

where f(x) is the output of network. The oUfut value of each node is computed according 
to the bell-shaped function centered at ci' (J is the width of a node. Wi is the weight asso­
ciated with ith node. In our experiments, the width of all nodes are fixed. The first N train­
ing samples are assigned to the centers of N -nodes network. The weights are adjusted 
according to stochastic gradient decent rule: 

(7) 

where 11 is the learning rate. dk is the desired output of network 

To train a hybrid LE/RBS equalizer, a collection of training samples is used to adjust the 
parameters of linear equalizer. The training samples for RBS network are collected 
according to the distance rule described above. They are used to adjust weights of RBS 
network only. 

The classification of a unknown sample follows a similar rule. The output value of the lin­
ear equalizer is computed. If the distance between output value and the closest point in 
signal constellation is smaller than the threshold, then the closest point is considered as the 
recovered signal. If not, the output of the RBS network is used to classify the sample. The 
closest point in signal constellation from output of RBS network is then used for sample 
class. Note, however, that there is a different interpretation for the output of linear and 
RBS equalizer. The function of linear equalizers can be considered as an approximation of 
channel inversion. Hence, it is similar to a deconvolution computation [Proakis, 1989]. 
However, for a RBS network, the output is the summation of weighted local Gaussian 
functions. For closely located points, the network is asked to give same output by then 
training procedure. Thus, it is more a classification approach than a deconvolution 
method. 

The approach provides a design method for hybrid LE/RBS equalizer. The linear equaliz-
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Fig. 1 System Diagram of Hybrid Linear/Nonlinear Equalizer 
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Fig. 2 A RadiaCBasis_Function Network 
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ers perfonn the channel inversion or partitioning of the feature space, depending on the 
output value. More complicated tree-structured equalizer [Gelfand, et.al., 1991] can be 
adopted for this proposes. The nonlinear RBS networks are used for classifying "con­
fused" samples. They can be replaced by MLPs. Hence, the approach provides a general 
method for designing hybrid structure eqalizers. However, the trade-off between complex­
ity and efficiency of these combinations has to to be considered. For example, a multilayer 
tree-structured equalizer can divide the space into smaller regions for finer classification. 
However, the small amount of training samples in practice can be a problem for this 
method. A MLP network can be used for nonlinear classifier. Nevertheless, convergence 
time will be a major concern. 

3 EXPERIMENT 

We have applied our hybrid design method to a 4-QAM system. The channel is modeled 
by 

X j _ 1 = 0.406/j +0.814/j _ 1 +0.407/j _ 2 +w j (8) 
where I j = {- 1 - j,- 1 + j,l- j,1 + j} . 

A 7-tapped complex linear equalizer is used for classifying the input. Threshold for non­
linear equalizer is 0.1. We use 4,000training samples and 5,000 testing samples. A 400 
nodes RBS network is used for nonlinear equalizer. The first 400 "confused" training sam­
ples are used for the center of network. The network is trained according to (6). Learning 
coefficient T) is chosen to be 0.01. The width of a RBS node is 1.0. 

Fig. 3 shows the symbol error probability vs. SNR. The error probability is evaluated over 
5,000 testing samples. The hybrid LE/RBS network produces nearly 10% reduction of 
error rate compared with linear equalizer. This shows that a hybrid linear/RBS network 
equalizer can reduce the error rate by classifying "confused" samples near decision 
boundaries. No comparison with Bayes classifier has been made. In our experiments, it is 
observed that the error rate can be reduced further by increasing the number of RBS 
nodes. This seems imply that a large-size RBS network will in general produce better clas­
sification result. However, since there is always a limitation of the computation resources: 
computation time and memory storage, the perfonnance of the hybrid linear/RBS network 
is limited, especially in high signal constellation case discussed below. 

Equalization in high signal constellation, 16 and 64-QAM, have been tried. The result 
shows no significant improvement This can be explained by the increasing of complexity. 
Recall that the RBS network is to separate the samples near the boundary. To deal with the 
increasing of number of classes due to high signal constellation, the number of nodes of 
network must increase proportionally. Since the increasing rate is exponential in terms of 
number of classes, it implies a straight-forward implementation of RBS network method 
can not be used for high signal constellation. In [Chen, et.al., 1991], authors suggest a 
dynamical RBS network with adjustable center location and width. The algorithm runs in 
batch mode. It is reported that the size of network can be reduced dramatically by the 
dynamical RBS network method. However, for equalizer application, on-line version of 
the algorithm is needed. 
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Fig. 3 Error Probability of Hybrid Linear/Radial_Basis_Function Network Equalizer for a 
Linear Channel xi - 1 = 0.406Ii + 0.814/i _ 1 + 0.407li _ 2 +wi with 4-QAM. 

4 CONCLUSION AND DISCUSSION FOR HYBRID LE/RBS 
EQUALIZER DESIGN 

By combining feature-space partitioning and nonlinear equalizers, we have developed a 
hybrid linear/nonlinear equalization approach. The major contribution of this research is 
to provide a theoretical justification of nonlinear equalization approach for linear time-dis­
persive channels. A feature-space partitioning method by linear equalizer is proposed. 
RBS networks for nonlinear equalizers are integrated into the design to separate the sam­
ples near decision boundary. The experiments for 4-QAM equalization have demonstrated 
the feasibility of the approach. For high signal constellation modulation, a dynamical RBS 
network method [Chen, etal., 1991] has been suggested to overcome the problem of 
increasing complexity. 

The hybrid Linear/nonlinear equalization approach combines the strength of linear and 
nonlinear equalizers. It offers a framework to integrate the deconvolution and classifica­
tion methods. The approach can be generalized to include complicated partitioning 
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scheme and other nonlinear networks, such as :MLP, as well. 

More researches need to be conducted to make this approach practical for general use. The 
relationship between the performance of hybrid equalizer and taps length of linear equal­
izers, the width and the number ofRBS nodes need to be investigated. The on-line version 
of dynamical RBS network [Chen, et.al., 1991] need to be developed. 
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