
Using Prior Knowledge in a NNPDA to Learn
Context-Free Languages

Guo-Zheng SUD Sreerupa Das
Dept. of Compo Sc. &
Inst. of Cognitive Sc.

University of Colorado
Boulder, CO 80309

c. Lee Giles·
NEC Research Inst.
4 Independence Way
Princeton, NJ 08540

"'lnst. for Adv. Compo Studies
University of Maryland

College Park, MD 20742

Abstract

Although considerable interest has been shown in language inference and
automata induction using recurrent neural networks, success of these
models has mostly been limited to regular languages. We have previ­
ously demonstrated that Neural Network Pushdown Automaton (NNPDA)
model is capable of learning deterministic context-free languages (e.g.,
anbn and parenthesis languages) from examples. However, the learning
task is computationally intensive. In this paper we discus some ways in
which a priori knowledge about the task and data could be used for efficient
learning. We also observe that such knowledge is often an experimental
prerequisite for learning nontrivial languages (eg. anbncbmam).

1 INTRODUCTION

Language inference and automata induction using recurrent neural networks has
gained considerable interest in the recent years. Nevertheless, success of these mod­
els has been mostly limited to regular languages. Additional information in form of
a priori knowledge has proved important and at times necessary for learning com­
plex languages (Abu-Mostafa 1990; AI-Mashouq and Reed, 1991; Omlin and Giles,
1992; Towell, 1990). They have demonstrated that partial information incorporated
in a connectionist model guides the learning process through constraints for efficient
learning and better generalization.

'Ve have previously shown that the NNPDA model can learn Deterministic Context

65

66 Das, Giles, and Sun

Output
Top-or-stack

push ... 11:0

t
pop or no-op

Action External State(t+l) ~ stack

00 0 0 \
\

.~~

~ t ~ "
alphabets on the

It;;:::::::.. "hig.her order
stack

::;;;;::.. weights
'::~::::'.

='000 00 00 copy

State Neurons Input Neurons Read Neurons

it it 11'
State(t) Input(t) Top-of-stack(t)

Figure 1: The figure shows the architecture of a third-order NNPDA. Each weight
relates the product of Input(t), State(t) and Top-of-Stack information to the
State(t+1). Depending on the activation of the Action Neuron, stack action
(namely, push, pop or no operation) is taken and the Top-of-Stack (i.e. value
of Read Neurons) is updated.

Free Languages (DCFLs) from a finite set of examples. However, the learning task
requires considerable amount of time and computational resources. In this paper
we discuss methods in which a priori knowledge, may be incorporated in a N eum!
network Pushdown Automaton (NNPDA) described in (Das, Giles and Sun, 1992;
Giles et aI, 1990; Sun et aI, 1990).

2 THE NEURAL NETWORK PUSHDOWN AUTOMATA

2.1 ARCHITECTURE

The description of the network architecture is necessarily brief, for further details
see the references above. The network consists of a set of recurrent units, called
state neurons and an external stack memory. One state neuron is designated as the
output neuron. The state neurons get input (at every time step) from three sources:
from their own recurrent connections, from the input neurons and from the read
neurons. The input neurons register external inputs which consist of strings of
characters presented one at a time. The read neurons keep track of the symbol(s)
on top of the stack. One non-recurrent state neuron, called the action neuron,
indicates the stack action (push, pop or no-op) at any instance. The architecture
is shown in Figure 1.

The stack used in this model is continuous. Unlike an usual discrete stack where an
element is either present or absent, elements in a continuous stack may be present
in varying degrees (values between [0, 1]). A continuous stack is essential in order

Using Prior Knowledge in a NNPDA to Learn Context-Free Languages 67

to permit the use of a continuous optimization method during learning. The stack
is manipulated by the continuous valued action neuron. A detailed discussion on
the operations may be found in (Das, Giles and Sun, 1992).

2.2 LEARNABLE CLASS OF LANGUAGES

The class of language learnable by the NNPDA is a proper subset of deterministic
context-free languages. A formal description of a Pushdown Automaton (PDA)
requires two distinct sets of symbols - one is the input symbol set and the other
is the stack symbol set!. We have reduced the complexity of this PDA model in
the following ways: First, we use the same set of symbols for the input and the
stack. Second, when a push operation is performed the symbol pushed on the stack
is the one that is available as the current input. Third, no epsilon transitions are
allowed in the NNPDA. Epsilon transition is one that performs state transition and
stack action without reading in a new input symbol. Unlike a deterministic finite
state automata, a deterministic PDA can make epsilon transitions under certain
restrictions!. Although these simplifications reduce the language class learnable by
NNPDA, nevertheless the languages in this class retain essential properties of eFLs
and is therefore more complex than any regular language.

2.3 TRAINING

The activation of the state neurons s at time step t + 1 may be formulated as follows
(we will only consider third order NNPDA in this paper):

(1)

where g(x) = frac1/1 + exp(-x), i is the activation of the input neurons and r is
the activation of the read neuron and W is the weight matrix of the network. We
use a localized representation for the input and the read symbols. During training,
input sequences are presented one at a time and activations are allowed to propagate
until the end of the string is reached. Once the end is reached the activation of the
output neuron is matched with the target (which is 1.0 for positive string and 0.0 for
a negative string) The learning rule used in the NNPDA is a significantly enhanced
extension to Real Time Recurrent Learning (\Villiams and Zipser, 1989).

2.4 OBJECTIVE FUNCTION

The objective function used to train the network consists of two error terms: one for
positive strings and the other for negative strings. For positive strings we require
(a) the NNPDA must reach a final state and (b) the stack must be empty. This
criterion can be reached by minimizing the error function:

(2)

where So(l) is the activation of an output neuron and L(I) is the stack length, after
a string of length I has been presented as input a character at a time. For negative

1 For details refer to (Hopcroft, 1979).

68 Das, Giles, and Sun

avg of total parenthesis postfix anbn

presentations w IL wjo IL w IL wjo IL w IL wjo IL
of strings 2671 5644 8326 15912 108200 >200000

of character 10628 29552 31171 82002 358750 >700000

Table 1: Effect of Incremental Learning (IL) is displayed in this table. The number
of strings and characters required for learning the languages are provided here.

parenthesis anbn

w SSP wjo SSP w SSP wjo SSP
epochs 50-80 50-80 150-250 150-250
generalization 100% 100% 100% 98.97%
number of units 1+1 2 1+1 2

anbncbmam an+mbncm

w SSP wjo SSP w SSP wjo SSP
epochs 150 "''''''' 150-250 ***
generalization 96.02% *** 100% ***
number of units 1+1 *** 1+1 ***

Table 2: This table provides some statistics on epochs, generalization and number
of hidden units required for learning with and without selective string presentation
(SSP).

strings, the error function is modified as:

E - { so(1) - L(l)
rror - 0

if (so(1) - L(l)) > 0.0
else (3)

Equation (2) reflects the criterion that, for a negative pattern we require either the
final state so(l) = 0.0 or the stack length L(1) to be greater than 1.0 (only when
so(l) = 1.0 and the stack length L(l) is close to zero, the error is high).

3 BUILDING IN PRIOR KNOWLEDGE

In practical inference tasks it may be possible to obtain prior knowledge about the
problem domain. In such cases it often helps to build in knowledge into the system
under study. There could be at least two different types of knowledge available
to a model (a) knowledge that depends on the training data with absolutely no
knowledge about the automaton, and (b) partial knowledge about the automaton
being inferred. Some of ways in which knowledge can be provided to the model are
discussed below.

3.1 KNOWLEDGE FROM THE DATA

3.1.1 Incremental Learning

Incremental Learning has been suggested by many (Elman, 1991; Giles et aI, 1990,
Sun et aI, 1990), where the training examples are presented in order of increasing

Using Prior Knowledge in a NNPDA to Learn Context-Free Languages 69

0.9

0.8

0.7

0.6 ., ., ...,
... 0.5
0

0.4

0.3

0.2

50 100 150
epochs

with SSP -
without SSP --.

200 250

Figure 2: Faster convergence using selective string presentation (SSP) for parenthe­
sis language task.

length. This model of learning starts with a training set containing short simple
strings. Longer strings are added to the training set as learning proceeds.

We believe that incremental learning is very useful when (a) the data presented
contains structure, and (b) the strings learned earlier embody simpler versions of
the task being learned. Both these conditions are valid for context-free languages.
Table 1 provides some results obtained when incremental learning was used. The
figures are averages over several pairs of simulations, each of which were initialized
with the same initial random weights.

3.1.2 Selective Input Presentation

Our training data contained both positive and negative examples. One problem
with training on incorrect strings is that, once a symbol in the string is reached
that makes it negative, no further information is gained by processing the rest of
the string. For example, the fifth a in the string aaaaba ... makes the string a
negative example of the language a"b", irrespective of what follows it. In order to
incorporate this idea we have introduced the concept of a dead state.

During training, we assume that there is a teacher or an oracle who has knowledge
of the grammar and is able to identify the first (leftmost) occurrence of incorrect
sequence of symbols in a negative string. When such a point is reached in the input
string, further processing of the string is stopped and the network is trained so that
one designated state neuron called the dead state neuron is active. To accommodate
the idea of a dead state in the learning rule, the following change is made: if the
network is being trained on negative strings that end in a dead state then the
length L(l) in the error function in equation (1) is ignored and it simply becomes

70 Das, Giles, and Sun

0.5

0 . 45

0 . 4

0.35

...
0

0 . 3
0. 0 . 25
~

0.2

0.15

0 . 1

0.05
a

W/o IW -
wlth 1 IW --_.
wlth 2 IW ' .. -­
wlth 3 IW ---

1000 2000 3000 4000 5000 6000 7000 8000 9000
No . of gtrlngg

Figure 3: Learning curves when none, one or more initial weights (IW) were set for
postfix language learning task

Error = ~(1 - Sdead{l))2. Since such strings have an negative subsequence, they
cannot be a prefix to any positive string. Therefore at this point we do not care
about the length of the stack. For strings that are either positive or negative but
do not go to a dead state (an example would be a prefix of a positive string); the
objective function remains the same as described earlier in Equations 1 and 2.

Such additional information provided during training resulted in efficient learning,
helped in learning of exact pushdown automata and led to better generalization for
the trained network. Information in this form was often a prerequisite for success­
fully learning certain languages. Figure 2 shows a typical plot of improvement in
learning when such knowledge is used. Table 2 shows improvements in the statistics
for generalization, number of units needed and number of epochs required for learn­
ing. The numbers in the tables were averages over several simulations; changing
the initial conditions resulted in values of similar orders of magnitude.

3.2 KNOWLEDGE ABOUT THE TASK

3.2.1 Knowledge About The Target PDA's Dynamics

One way in which knowledge about the target PDA can be built into a system is
by biasing the initial conditions of the network. This may be done by assigning
predetermined initial values to a selected set of weights (or biases). For example a
third order NNPDA has a dynamics that maps well onto the theoretical model of a
PDA. Both allow a three to two mapping of a similar kind. This is because in the
third order NNPDA, the product of the activations of the input neurons, the read
neurons and the state neurons determine the next state and the next action to be

Using Prior Knowledge in a NNPDA to Learn Context-Free Languages 71

Start 9 [.5 .5]

b -* , ,

Dead
[.9 *]

[.1 .9]
a/-/push

(a) PDA for parenthesis

End
[* .9]

Start
[.5 .5]

(b) PDA for a~n

[.0.6]

e/-/*

O End
[* .9]

Figure 4: The figure shows some of the PDAs inferred by the NNPDA. In the figure
the nodes in the graph represent states inferred by the NNPDA and the numbers in
"[]" indicates the state representations. Every transition is indicated by an arrow
and is labeled as "x/y /z" where "x" corresponds to the current input symbol, "y"
corresponds to the symbol on top of the stack and "z" corresponds to the action
taken.

taken. It may be possible to determine some of the weights in a third order network
if certain information about the automaton in known. Typical improvement in
learning is shown in Figure 3 for a postfix language learning task.

3.2.2 U sing Structured Examples

Structured examples from a grammar are a set of strings where the order of letter
generation is indicated by brackets. An example would be the string ((ab)c) gen­
erated by the rules S ---+ Xc; X ---+ abo Under the current dynamics and limitations
of the model, this information could be interpreted as providing the stack actions
(push and pop) to the NNPDA. Learning the palindrome language is a hard task
because it necessitates remembering a precise history over a long period of time.
The NNPDA was able to learn the palindrome language for two symbols when
structured examples were presented.

4 AUTOMATON EXTRACTION FROM NNPDA

Once the network performs well on the training set, the transition rules in the
inferred PDA can then be deduced. Since the languages learned by the NNPDA so
far corresponded to PDAs with few states, the state representations in the induced
PDA could be inferred by looking at the state neuron activations when presented
with all possible character sequences. For larger PDAs clustering techniques could
be used to infer the state representations. Various clustering techniques for similar
tasks have been discussed in (Das and Das, 1992; Giles et al., 1992). Figure 4 shows
some of the PDAs inferred by the NNPDA.

72 Das, Giles, and Sun

5 CONCLUSION

This paper has described some of the ways in which prior knowledge could be used
to learn DCFGs in an NNPDA. Such knowledge is valuable to the learning process
in two ways. It may reduce the solution space, and as a consequence may speed
up the learning process. Having the right restrictions on a given representation can
make learning simple: which reconfirms an old truism in Artificial Intelligence.

References

Y.S. Abu-Mostafa. (1990) Learning from hints in neural networks. Journal of
Complexity, 6:192-198.

K.A. AI-Mashouq and I.S. Reed . (1991) Including hints in training neural networks.
Neural Computation, 3(3):418-427.

S. Das and R. Das. (1992) Induction of discrete state-machine by stabilizing a con­
tinuous recurrent network using clustering. To appear in CSI Journal of Computer
Science and Informatics. Special Issue on Neural Computing.

S. Das, C.L. Giles, and G.Z. Sun. (1992) Learning context free grammars: capa­
bilities and limitations of neural network with an external stack memory. Proc of
the Fourteenth Annual Conf of the Cognitive Science Society, pp. 791-795. Morgan
Kaufmann, San Mateo, Ca.

J .L. Elman. (1991) Incremental learning, or the importance of starting small. CRL
Tech Report 9101, Center for Research in Language, UCSD, La Jolla, CA.

C.L. Giles, G.Z. Sun, H.H. Chen, Y.C. Lee and D. Chen, (1990) Higher Order
Recurrent Networks & Grammatical Inference, Advances in Neural Information
Processing Systems 2, pp. 380-387, ed. D.S. Touretzky, Morgan Kaufmann, San
Mateo, CA.

C.L. Giles, C.B . Miller, H.H. Chen, G.Z. Sun, and Y.C. Lee. (1992) Learning
and extracting finite state automata with second-order recurrent neural networks.
Neural Computation, 4(3):393-405.

J .E. Hopfcroft and J.D. Ullman. (1979) Introduction to Automata Theory, Lan­
guages and Computation. Addison-Wesley, Reading, MA.

C.W. Omlin and C.L. Giles. (1992) Training second-order recurrent neural networks
using hints. Proceedings of the Ninth Int Conf on Machine Learning, pp. 363-368.
D. Sleeman and P. Edwards (eds). Morgan Kaufmann, San Mateo, Ca.

G.Z. Sun, H.H. Chen, C.L. Giles, Y.C . Lee and D. Chen. (1991) Neural networks
with external memory stack that learn context-free grammars from examples. Proc
of the Conf on Information Science and Systems, Princeton U., Vol. II, pp. 649-653.

G.G. Towell, J.W. Shavlik and M.O Noordewier. (1990) Refinement of approxi­
mately correct domain theories by knowledge-based neural-networks. In Proc of the
Eighth National Conf on Artificial Intelligence, Boston, MA. pp. 861.

R.J. Williams and D. Zipser. (1989) A learning algorithm for continually running
fully recurrent neural networks. Neural Computation 1(2):270-280.

