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Abstract 

Although considerable interest has been shown in language inference and 
automata induction using recurrent neural networks, success of these 
models has mostly been limited to regular languages. We have previ­
ously demonstrated that Neural Network Pushdown Automaton (NNPDA) 
model is capable of learning deterministic context-free languages (e.g., 
anbn and parenthesis languages) from examples. However, the learning 
task is computationally intensive. In this paper we discus some ways in 
which a priori knowledge about the task and data could be used for efficient 
learning. We also observe that such knowledge is often an experimental 
prerequisite for learning nontrivial languages (eg. anbncbmam ). 

1 INTRODUCTION 

Language inference and automata induction using recurrent neural networks has 
gained considerable interest in the recent years. Nevertheless, success of these mod­
els has been mostly limited to regular languages. Additional information in form of 
a priori knowledge has proved important and at times necessary for learning com­
plex languages (Abu-Mostafa 1990; AI-Mashouq and Reed, 1991; Omlin and Giles, 
1992; Towell, 1990). They have demonstrated that partial information incorporated 
in a connectionist model guides the learning process through constraints for efficient 
learning and better generalization. 

'Ve have previously shown that the NNPDA model can learn Deterministic Context 
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Figure 1: The figure shows the architecture of a third-order NNPDA. Each weight 
relates the product of Input(t), State(t) and Top-of-Stack information to the 
State(t+1). Depending on the activation of the Action Neuron, stack action 
(namely, push, pop or no operation) is taken and the Top-of-Stack (i.e. value 
of Read Neurons) is updated. 

Free Languages (DCFLs) from a finite set of examples. However, the learning task 
requires considerable amount of time and computational resources. In this paper 
we discuss methods in which a priori knowledge, may be incorporated in a N eum! 
network Pushdown Automaton (NNPDA) described in (Das, Giles and Sun, 1992; 
Giles et aI, 1990; Sun et aI, 1990). 

2 THE NEURAL NETWORK PUSHDOWN AUTOMATA 

2.1 ARCHITECTURE 

The description of the network architecture is necessarily brief, for further details 
see the references above. The network consists of a set of recurrent units, called 
state neurons and an external stack memory. One state neuron is designated as the 
output neuron. The state neurons get input (at every time step) from three sources: 
from their own recurrent connections, from the input neurons and from the read 
neurons. The input neurons register external inputs which consist of strings of 
characters presented one at a time. The read neurons keep track of the symbol(s) 
on top of the stack. One non-recurrent state neuron, called the action neuron, 
indicates the stack action (push, pop or no-op) at any instance. The architecture 
is shown in Figure 1. 

The stack used in this model is continuous. Unlike an usual discrete stack where an 
element is either present or absent, elements in a continuous stack may be present 
in varying degrees (values between [0, 1]). A continuous stack is essential in order 
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to permit the use of a continuous optimization method during learning. The stack 
is manipulated by the continuous valued action neuron. A detailed discussion on 
the operations may be found in (Das, Giles and Sun, 1992). 

2.2 LEARNABLE CLASS OF LANGUAGES 

The class of language learnable by the NNPDA is a proper subset of deterministic 
context-free languages. A formal description of a Pushdown Automaton (PDA) 
requires two distinct sets of symbols - one is the input symbol set and the other 
is the stack symbol set!. We have reduced the complexity of this PDA model in 
the following ways: First, we use the same set of symbols for the input and the 
stack. Second, when a push operation is performed the symbol pushed on the stack 
is the one that is available as the current input. Third, no epsilon transitions are 
allowed in the NNPDA. Epsilon transition is one that performs state transition and 
stack action without reading in a new input symbol. Unlike a deterministic finite 
state automata, a deterministic PDA can make epsilon transitions under certain 
restrictions!. Although these simplifications reduce the language class learnable by 
NNPDA, nevertheless the languages in this class retain essential properties of eFLs 
and is therefore more complex than any regular language. 

2.3 TRAINING 

The activation of the state neurons s at time step t + 1 may be formulated as follows 
(we will only consider third order NNPDA in this paper): 

(1) 

where g(x) = frac1/1 + exp( -x), i is the activation of the input neurons and r is 
the activation of the read neuron and W is the weight matrix of the network. We 
use a localized representation for the input and the read symbols. During training, 
input sequences are presented one at a time and activations are allowed to propagate 
until the end of the string is reached. Once the end is reached the activation of the 
output neuron is matched with the target (which is 1.0 for positive string and 0.0 for 
a negative string) The learning rule used in the NNPDA is a significantly enhanced 
extension to Real Time Recurrent Learning (\Villiams and Zipser, 1989). 

2.4 OBJECTIVE FUNCTION 

The objective function used to train the network consists of two error terms: one for 
positive strings and the other for negative strings. For positive strings we require 
(a) the NNPDA must reach a final state and (b) the stack must be empty. This 
criterion can be reached by minimizing the error function: 

(2) 

where So(l) is the activation of an output neuron and L(I) is the stack length, after 
a string of length I has been presented as input a character at a time. For negative 

1 For details refer to (Hopcroft, 1979). 
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avg of total parenthesis postfix anbn 

presentations w IL wjo IL w IL wjo IL w IL wjo IL 
# of strings 2671 5644 8326 15912 108200 >200000 

# of character 10628 29552 31171 82002 358750 >700000 

Table 1: Effect of Incremental Learning (IL) is displayed in this table. The number 
of strings and characters required for learning the languages are provided here. 

parenthesis anbn 

w SSP wjo SSP w SSP wjo SSP 
epochs 50-80 50-80 150-250 150-250 
generalization 100% 100% 100% 98.97% 
number of units 1+1 2 1+1 2 

anbncbmam an+mbncm 

w SSP wjo SSP w SSP wjo SSP 
epochs 150 "''''''' 150-250 *** 
generalization 96.02% *** 100% *** 
number of units 1+1 *** 1+1 *** 

Table 2: This table provides some statistics on epochs, generalization and number 
of hidden units required for learning with and without selective string presentation 
(SSP). 

strings, the error function is modified as: 

E - { so(1) - L(l) 
rror - 0 

if (so(1) - L(l)) > 0.0 
else (3) 

Equation (2) reflects the criterion that, for a negative pattern we require either the 
final state so(l) = 0.0 or the stack length L(1) to be greater than 1.0 (only when 
so(l) = 1.0 and the stack length L(l) is close to zero, the error is high). 

3 BUILDING IN PRIOR KNOWLEDGE 

In practical inference tasks it may be possible to obtain prior knowledge about the 
problem domain. In such cases it often helps to build in knowledge into the system 
under study. There could be at least two different types of knowledge available 
to a model (a) knowledge that depends on the training data with absolutely no 
knowledge about the automaton, and (b) partial knowledge about the automaton 
being inferred. Some of ways in which knowledge can be provided to the model are 
discussed below. 

3.1 KNOWLEDGE FROM THE DATA 

3.1.1 Incremental Learning 

Incremental Learning has been suggested by many (Elman, 1991; Giles et aI, 1990, 
Sun et aI, 1990), where the training examples are presented in order of increasing 
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Figure 2: Faster convergence using selective string presentation (SSP) for parenthe­
sis language task. 

length. This model of learning starts with a training set containing short simple 
strings. Longer strings are added to the training set as learning proceeds. 

We believe that incremental learning is very useful when (a) the data presented 
contains structure, and (b) the strings learned earlier embody simpler versions of 
the task being learned. Both these conditions are valid for context-free languages. 
Table 1 provides some results obtained when incremental learning was used. The 
figures are averages over several pairs of simulations, each of which were initialized 
with the same initial random weights. 

3.1.2 Selective Input Presentation 

Our training data contained both positive and negative examples. One problem 
with training on incorrect strings is that, once a symbol in the string is reached 
that makes it negative, no further information is gained by processing the rest of 
the string. For example, the fifth a in the string aaaaba ... makes the string a 
negative example of the language a"b", irrespective of what follows it. In order to 
incorporate this idea we have introduced the concept of a dead state. 

During training, we assume that there is a teacher or an oracle who has knowledge 
of the grammar and is able to identify the first (leftmost) occurrence of incorrect 
sequence of symbols in a negative string. When such a point is reached in the input 
string, further processing of the string is stopped and the network is trained so that 
one designated state neuron called the dead state neuron is active. To accommodate 
the idea of a dead state in the learning rule, the following change is made: if the 
network is being trained on negative strings that end in a dead state then the 
length L(l) in the error function in equation (1) is ignored and it simply becomes 
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Figure 3: Learning curves when none, one or more initial weights (IW) were set for 
postfix language learning task 

Error = ~(1 - Sdead{l))2. Since such strings have an negative subsequence, they 
cannot be a prefix to any positive string. Therefore at this point we do not care 
about the length of the stack. For strings that are either positive or negative but 
do not go to a dead state (an example would be a prefix of a positive string); the 
objective function remains the same as described earlier in Equations 1 and 2. 

Such additional information provided during training resulted in efficient learning, 
helped in learning of exact pushdown automata and led to better generalization for 
the trained network. Information in this form was often a prerequisite for success­
fully learning certain languages. Figure 2 shows a typical plot of improvement in 
learning when such knowledge is used. Table 2 shows improvements in the statistics 
for generalization, number of units needed and number of epochs required for learn­
ing. The numbers in the tables were averages over several simulations; changing 
the initial conditions resulted in values of similar orders of magnitude. 

3.2 KNOWLEDGE ABOUT THE TASK 

3.2.1 Knowledge About The Target PDA's Dynamics 

One way in which knowledge about the target PDA can be built into a system is 
by biasing the initial conditions of the network. This may be done by assigning 
predetermined initial values to a selected set of weights (or biases). For example a 
third order NNPDA has a dynamics that maps well onto the theoretical model of a 
PDA. Both allow a three to two mapping of a similar kind. This is because in the 
third order NNPDA, the product of the activations of the input neurons, the read 
neurons and the state neurons determine the next state and the next action to be 
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Figure 4: The figure shows some of the PDAs inferred by the NNPDA. In the figure 
the nodes in the graph represent states inferred by the NNPDA and the numbers in 
"[]" indicates the state representations. Every transition is indicated by an arrow 
and is labeled as "x/y /z" where "x" corresponds to the current input symbol, "y" 
corresponds to the symbol on top of the stack and "z" corresponds to the action 
taken. 

taken. It may be possible to determine some of the weights in a third order network 
if certain information about the automaton in known. Typical improvement in 
learning is shown in Figure 3 for a postfix language learning task. 

3.2.2 U sing Structured Examples 

Structured examples from a grammar are a set of strings where the order of letter 
generation is indicated by brackets. An example would be the string (( ab)c) gen­
erated by the rules S ---+ Xc; X ---+ abo Under the current dynamics and limitations 
of the model, this information could be interpreted as providing the stack actions 
(push and pop) to the NNPDA. Learning the palindrome language is a hard task 
because it necessitates remembering a precise history over a long period of time. 
The NNPDA was able to learn the palindrome language for two symbols when 
structured examples were presented. 

4 AUTOMATON EXTRACTION FROM NNPDA 

Once the network performs well on the training set, the transition rules in the 
inferred PDA can then be deduced. Since the languages learned by the NNPDA so 
far corresponded to PDAs with few states, the state representations in the induced 
PDA could be inferred by looking at the state neuron activations when presented 
with all possible character sequences. For larger PDAs clustering techniques could 
be used to infer the state representations. Various clustering techniques for similar 
tasks have been discussed in (Das and Das, 1992; Giles et al., 1992). Figure 4 shows 
some of the PDAs inferred by the NNPDA. 
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5 CONCLUSION 

This paper has described some of the ways in which prior knowledge could be used 
to learn DCFGs in an NNPDA. Such knowledge is valuable to the learning process 
in two ways. It may reduce the solution space, and as a consequence may speed 
up the learning process. Having the right restrictions on a given representation can 
make learning simple: which reconfirms an old truism in Artificial Intelligence. 
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