
Learning Sequential Tasks by 
Incrementally Adding Higher Orders 

Mark Ring 
Department of Computer Sciences, Taylor 2.124 

University of Texas at Austin 
Austin, Texas 78712 
(ring@cs. utexas.edu) 

Abstract 

An incremental, higher-order, non-recurrent network combines two 
properties found to be useful for learning sequential tasks: higher­
order connections and incremental introduction of new units. The 
network adds higher orders when needed by adding new units that 
dynamically modify connection weights. Since the new units mod­
ify the weights at the next time-step with information from the 
previous step, temporal tasks can be learned without the use of 
feedback, thereby greatly simplifying training. Furthermore, a the­
oretically unlimited number of units can be added to reach into 
the arbitrarily distant past. Experiments with the Reber gram­
mar have demonstrated speedups of two orders of magnitude over 
recurrent networks. 

1 INTRODUCTION 

Second-order recurrent networks have proven to be very powerful [8], especially 
when trained using complete back propagation through time [1, 6, 14]. It has also 
been demonstrated by Fahlman that a recurrent network that incrementally adds 
nodes during training-his Recurrent Cascade-Correlation algorithm [5]-can be 
superior to non-incremental, recurrent networks [2,4, 11, 12, 15]. 

The incremental, higher-order network presented here combines advantages of both 
of these approaches in a non-recurrent network. This network (a simplified, con-

115 



116 Ring 

tinuous version of that introduced in [9]), adds higher orders when they are needed 
by the system to solve its task. This is done by adding new units that dynamically 
modify connection weights. The new units modify the weights at the next time-step 
with information from the last, which allows temporal tasks to be learned without 
the use of feedback. 

2 GENERAL FORMULATION 

Each unit (U) in the network is either an input (I), output (0), or high-level (L) 
unit. 

Ui(t) 

Ii(t) 

Oi(t) 

ret) 
L~y(t) 

value of ith unit at time t. 

Ui(t) where i is an input unit. 

Ui(t) where i is an output unit. 

Target value for Oi (t) at time t. 

Ui(t) where i is the higher-order unit that 

modifies weight wxy at time t. 1 

The output and high-level units are collectively referred to as non-input (N) units: 

{ Oi (t) if Ui = Oi. 
L~y(t) if Ui = L~y. 

In a given time-step, the output and high-level units receive a summed input from 
the input units. 

Ni(t) == L Ij (t)g(i, j, t). (1) 
j 

g is a gating function representing the weight of a particular connection at a par­
ticular time-step. If there is a higher-order unit assigned to that connection, then 
the input value of that unit is added to the connection's weight at that time-step.2 

( .. t) _ { Wij(t) + Lij(t - 1) If Lij exists 
g Z,), - Wij (t) Otherwise (2) 

At each time-step, the values of the output units are calculated from the input units 
and the weights (possibly modified by the activations of the high-level units from the 
previous time-step). The values of the high-level units are calculated at the same 
time in the same way. The output units generate the output of the network. The 
high-level units simply alter the weights at the next time-step. All unit activations 
can be computed simultaneously since the activations of the L units are not required 

1 A connection may be modified by at most one L unit. Therefore Li , Lzy , and L~y are 
identical but used as appropriate for notational convenience. 

21t can be seen that this is a higher-order connection in the usual sense if one substitutes 
the right-hand side of equation 1 for L'0 in equation 2 and then replaces g in equation 1 with 
the result. In fact, as the network increases in height, ever higher orders are introduced, 
while lower orders are preserved. 



Learning Sequential Tasks by Incrementally Adding Higher Orders 117 

until the following time-step. The network is arranged hierarchically in that every 
higher-order units is always higher in the hierarchy than the units on either side 
of the weight it affects. Since higher-order units have no outgoing connections, the 
network is not recurrent. It is therefore impossible for a high-level unit to affect, 
directly or indirectly, its own input. 

There are no hidden units in the traditional sense, and all units have a linear activa­
tion function. (This does not imply that non-linear functions cannot be represented, 
since non-linearities do result from the multiplication of higher-level and input units 
in equations 1 and 2.) 

Learning is done through gradient descent to reduce the sum-squared error. 

E(t) ! L:(Ti(t) - Oi(t»2 
2 . , 

(3) 

where 1] is the learning rate. Since it may take several time-steps for the value of 
a weight to affect the network's output and therefore the error, equation 3 can be 
rewritten as: 

BE(t) 
~Wij(t) = B ( ") , Wij t - r' 

(4) 

where 

{ 0 if U i = Oi 
ri = 1 + rX if Ui = L~y 

The value ri is constant for any given unit i and specifies how "high" in the hierarchy 
unit i is. It therefore also specifies how many time-steps it takes for a change in 
unit i's activation to affect the network's output. 

Due to space limitations, the derivation of the gradient is not shown, but is given 
elsewhere [10]. The resulting weight change rule, however, is: 

~ . . (t) - Ii (t _ i) { Ti(t) - Oi(t) If u~ = O~ 
w') - r ~W (t) If U' = LI xy - xy 

(5) 

The weights are changed after error values for the output units have been collected. 
Since each high-level unit is higher in the hierarchy than the units on either side 
of the weight it affects, weight changes are made bottom up, and the ~Wxy(t) in 
equation 5 will already have been calculated at the time ~Wij(t) is computed. 

The intuition behind the learning rule is that each high-level unit learns to utilize 
the context from the previous time-step for adjusting the connection it influences 
at the next time-step so that it can minimize the connection's error in that context. 
Therefore, if the information necessary to decide the correct value of a connection 
at one time-step is available at the previous time-step, then that information is used 
by the higher-order unit assigned to that connection. If the needed information is 
not available at the previous time-step, then new units may be built to look for 
the information at still earlier steps. This method concentrating on unexpected 
events is similar to the "hierarchy of decisions" of Dawkins [3], and the "history 
compression" of Schmidhuber [13]. 



118 Ring 

3 WHEN TO ADD NEW UNITS 

A unit is added whenever a weight is being pulled strongly in opposite directions 
(i.e. when learning is forcing the weight to increase and to decrease at the same 
time) . The unit is created to determine the contexts in which the weight is pulled 
in each direction. This is done in the following way: Two long-term averages are 
kept for each connection. The first of these records the average change made to the 
weight, 

~Wij(t) = O'~Wij(t) + (1 - O')~Wij(t - 1); 0 S; 0' S; l. 

The second is the long-term mean absolute deviation, given by: 

The parameter, 0', specifies the duration of the long-term average. A lower value 
of 0' means that the average is kept for a longer period of time. When ~Wij(t) is 

small, but I~Wij(t)1 is large, then the weight is being pulled strongly in conflicting 
directions, and a new unit is built. 

if 
I~Wij(t)1 

c + I~Wij(t)1 
>8 then build unit L~ +1, 

where c is a small constant that keeps the denominator from being zero, 8 is a 
threshold value, and N is the number of units in the network. A related method for 
adding new units in feed-forward networks was introduced by Wynne-Jones [16]. 

When a new unit is added, its incoming weights are initially zero. It has no output 
weights but simply learns to anticipate and reduce the error at each time-step of 
the weight it modifies. In order to keep the number of new units low, whenever a 
unit, Lij is created, the statistics for all connections into the destination unit (Ui ) 

are reset: I~Wij(t)1 ~ 0.0 and ~Wij(t) ~ 1.0. 

4 RESULTS 

The Reber grammar is a small finite-state grammar of the following form: 

sO X y. .. . 
B ~ E ... ... 
~ /v • ... 

TO 

Transitions from one node to the next are made by way of the labeled arcs. The 
task of the network is: given as input the label of the arc just traversed, predict 



Learning Sequential Tasks by Incrementally Adding Higher Orders 119 

Elman Recurrent Incremental 
Network RTRL Cascade Higher-Order 

Correlation Network 
Sequences Seen: Mean 25,000 206 

Best 20,000 19,000 176 
"Hidden" Units 15 2 2-3 40 

Table 1: The incremental higher-order network is compared against recurrent net­
works on the Reber grammar. The results for the recurrent networks are quoted 
from other sources [2, 5]. The mean and/or best performance is shown when avail­
able. RTRL is the real-time recurrent learning algorithm [15]. 

the arc that will be traversed next. A training sequence, or string, is generated 
by starting with a B transition and then randomly choosing an arc leading away 
from the current state until the final state is reached. Both inputs and outputs are 
encoded locally, so that there are seven output units (one each for B, T, S, X, V, P, 
and E) and eight input units (the same seven plus one bias unit). The network is 
considered correct if its highest activated outputs correspond to the arcs that can be 
traversed from the current state. Note that the current state cannot be determined 
from the current input alone. 

An Elman-type recurrent network was able to learn this task after 20,000 string 
presentations using 15 hidden units [2]. (The correctness criteria for the Elman 
net was slightly more stringent than that described in the previous paragraph.) 
Recurrent Cascade-Correlation (RCC) was able to learn this task using only two or 
three hidden units in an average of 25,000 string presentations [5]. 

The incremental, higher-order network was trained on a continuous stream of input: 
the network was not reset before beginning a new string. Training was considered 
to be complete only after the network had correctly classified 100 strings in a row. 
Using this criterion, the network completed training after an average of 206.3 string 
presentations with a standard deviation of 16.7. It achieved perfect generalization 
on test sets of 128 randomly generated strings in all ten runs. Because the Reber 
grammar is stochastic, a ceiling of 40 higher-order units was imposed on the network 
to prevent it from continually creating new units in an attempt to outguess the 
random number generator. 

Complete results for the network on the Reber grammar task are given in table 1. 
The parameter settings were: TJ = 0.04, (J" = 0.08, e = 1.0, f = 0.1 and Bias = 0.0. 
(The network seemed to perform better with no bias unit.) 

The network has also been tested on the "variable gap" tasks introduced by Mozer 
[7], as shown in figure 1. These tasks were intended to test performance of networks 
over long time-delays. Two sequences are alternately presented to the network. 
Each sequence begins with an X or a Y and is followed by a fixed string of characters 
with an X or a Y inserted some number of time-steps from the beginning. In 
figure 1 the number of time-steps, or "gap", is 2. The only difference between the 
two sequences is that the first begins with an X and repeats the X after the gap, 
while the second begins with a Y and repeats the Y after the gap. The network 
must learn to predict the next item in the sequence given the current item as input 



120 Ring 

Time-step: 0 
Sequence 1: X 
Sequence 2: Y 

1 2 
a b 
a b 

3 4 
X c 
Y c 

5 6 
d e 
d e 

789 
f g h 
f g h 

10 11 
J 
J 

12 
k 
k 

Figure 1: An example of a "variable gap" training sequence [7]. One item is pre­
sented to the network at each time-step. The target is the next item in the sequence. 
Here the "gap" is two, because there are two items in the sequence between the first 
X or Y and the second X or Y. In order to correctly predict the second X or Y, the 
network must remember how the sequence began. 

(where all inputs are locally encoded). In order for the network to predict the 
second occurrence of the X or Y, it must remember how the sequence began. The 
length of the gap can be increased in order to create tasks of greater difficulty. 

Results of the "gap" tasks are given in table 2. The values for the standard recurrent 
network and for Mozer's own variation are quoted from Mozer's paper [7]. The 
incremental higher-order net had no difficulty with gaps up to 24, which was the 
largest gap I tested. The same string was used for all tasks (except for the position 
of the second X or V), and had no repeated characters (again with the exception 
of the X and Y). The network continued to scale linearly with every gap size both 
in terms of units and epochs required for training. Because these tasks are not 
stochastic, the network always stopped building units as soon as it had created 
those necessary to solve each task. 

The parameter settings were: TJ = 1.5, (j = 0.2, e = 1.0, f = 0.1 and Bias = 0.0. 
The network was considered to have correctly predicted an element in the sequence 
if the most strongly activated output unit was the unit representing the correct 
prediction. The sequence was considered correctly predicted if all elements (other 
than the initial X or Y) were correctly predicted. 

Mean number of Training sets required by: 
Gap Standard Mozer Incremental Umts 

Recurrent Net Network Higher-Order Net Created 
2 468 328 4 10 
4 7406 584 6 15 
6 9830 992 8 19 
8 > 10000 1312 10 23 
10 > 10000 1630 12 27 
24 26 49 

Table 2: A comparison on the "gap" tasks of a standard recurrent-network and 
a network devised specifically for long time-delays (quoted from Mozer [7], who 
reported results for gaps up to ten) against an incremental higher-order network. 
The last column is the number of units created by the incremental higher-order net. 



Learning Sequential Tasks by Incrementally Adding Higher Orders 121 

5 CONCLUSIONS 

The incremental higher-order network performed much better than the networks 
that it was compared against on these tiny tests. A few caveats are in order, 
however. First, the parameters given for the tasks above were customized for those 
tasks. Second, the network may add a large number of new units if it contains 
many context-dependent events or if it is inherently stochastic. Third, though the 
network in principle can build an ever larger hierarchy that searches further and 
further back in time for a context that will predict what a connection's weight 
should be, many units may be needed to bridge a long time-gap. Finally, once a 
bridge across a time-delay is created, it does not generalize to other time-delays. 

On the other hand, the network learns very fast due to its simple structure that 
adds high-level units only when needed. Since there is no feedback (i.e. no unit ever 
produces a signal that will ever feed back to itself), learning can be Qone without 
back propagation through time. Also, since the outputs and high-level units have a 
fan-in equal to the number of inputs only, the number of connections in the system 
is much smaller than the number of connections in a traditional network with the 
same number of hidden units. 

Finally, the network can be thought of as a system of continuous-valued condition­
action rules that are inserted or removed depending on another set of such rules 
that are in turn inserted or removed depending on another set, etc. When new rules 
(new units) are added, they are initially invisible to the system, (i.e., they have no 
effect), but only gradually learn to have an effect as the opportunity to decrease 
error presents itself. 

Acknowledgements 

This work was supported by NASA Johnson Space Center Graduate Student Re­
searchers Program training grant, NGT 50594. I would like to thank Eric Hartman, 
Kadir Liano, and my advisor Robert Simmons for useful discussions and helpful 
comments on drafts of this paper. I would also like to thank Pavilion Technologies, 
Inc. for their generous contribution of computer time and office space required to 
complete much of this work. 

References 

[1] Jonathan Richard Bachrach. Connectionist Modeling and Control of Finite 
State Environments. PhD thesis, Department of Computer and Information 
Sciences, University of Massachusetts, February 1992. 

[2] Axel Cleeremans, David Servan-Schreiber, and James L. McClelland. Finite 
state automata and simple recurrent networks. Neural Computation, 1(3):372-
381, 1989. 

[3] Richard Dawkins. Hierarchical organisation: a candidate principle for ethology. 
In P. P. G. Bateson and R. A. Hinde, editors, Growing Points in Ethology, pages 
7-54, Cambridge, 1976. Cambridge University Press. 

[4] Jeffrey L. Elman. Finding structure in time. CRL Technical Report 8801, 
University of California, San Diego, Center for Research in Language, April 
1988. 



122 Ring 

[5] Scott E. Fahlman. The recurrent cascade-correlation architecture. In R. P. 
Lippmann, J. E. Moody, and D. S. Touretzky, editors, Advances in Neural 
Information Processing Systems 3, pages 190-196, San Mateo, California, 1991. 
Morgan Kaufmann Publishers. 

[6] C. L. Giles, C. B. Miller, D. Chen, G. Z. Sun, H. H. Chen, and Y. C. Lee. 
Extracting and learning an unknown grammar with recurrent neural networks. 
In J. E. Moody, S. J. Hanson, and R. P. Lippman, editors, Advances in Neural 
Information Processing Systems 4, pages 317-324, San Mateo, California, 1992. 
Morgan Kaufmann Publishers. 

[7] Michael C. Mozer. Induction of multiscale temporal structure. In John E. 
Moody, Steven J. Hanson, and Richard P. Lippmann, editors, Advances in 
Neural Information Processing Systems 4, pages 275-282, San Mateo, Califor­
nia, 1992. Morgan Kaufmann Publishers. 

[8] Jordan B. Pollack. The induction of dynamical recognizers. Machine Learning, 
7:227-252, 1991. 

[9] Mark B. Ring. Incremental development of complex behaviors through au­
tomatic construction of sensory-motor hierarchies. In Lawrence A. Birnbaum 
and Gregg C. Collins, editors, Machine Learning: Proceedings of the Eighth In­
ternational Workshop (ML91), pages 343-347. Morgan Kaufmann Publishers, 
June 1991. 

[10] Mark B. Ring. Sequence learning with incremental higher-order neural net­
works. Technical Report AI 93-193, Artificial Intelligence Laboratory, Univer­
sity of Texas at Austin, January 1993. 

[11] A. J. Robinson and F. Fallside. The utility driven dynamic error propagation 
network. Technical Report CUED/F-INFENG/TR.l, Cambridge University 
Engineering Department, 1987. 

[12] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal rep­
resentations by error propagation. In D. E. Rumelhart and J. L. McClelland, 
editors, Parallel Distributed Processing: Explorations in the Microstructure of 
Cognition. V1: Foundations. MIT Press, 1986. 

[13] Jiirgen Schmidhuber. Learning unambiguous reduced sequence descriptions. 
In J. E. Moody, S. J. Hanson, and R. P. Lippman, editors, Advances in Neural 
Information Processing Systems 4, pages 291-298, San Mateo, California, 1992. 
Morgan Kaufmann Publishers. 

[14] Raymond L. Watrous and Gary M. Kuhn. Induction of finite-state languages 
using second-order recurrent networks. In J. E. Moody, S. J. Hanson, and 
R. P. Lippman, editors, Advances in Neural Information Processing Systems 
4, pages 309-316, San Mateo, California, 1992. Morgan Kaufmann Publishers. 

[15] Ronald J. Williams and David Zipser. A learning algorithm for continually 
running fully recurrent neural networks. Neural Computation, 1(2):270-280, 
1989. 

[16] Mike Wynn-Jones. Node splitting: A constructive algorithm for feed-forward 
neural networks. Neural Computing and Applications, 1(1):17-22, 1993. 


