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Abstract 

• In a 

We use statistical mechanics to study generalization in large com
mittee machines. For an architecture with nonoverlapping recep
tive fields a replica calculation yields the generalization error in the 
limit of a large number of hidden units. For continuous weights the 
generalization error falls off asymptotically inversely proportional 
to Q, the number of training examples per weight. For binary 
weights we find a discontinuous transition from poor to perfect 
generalization followed by a wide region of metastability. Broken 
replica symmetry is found within this region at low temperatures. 
For a fully connected architecture the generalization error is cal
culated within the annealed approximation. For both binary and 
continuous weights we find transitions from a symmetric state to 
one with specialized hidden units, accompanied by discontinuous 
drops in the generalization error. 

1 Introduction 

There has been a good deal of theoretical work on calcula.ting the generalization 
ability of neural networks within the fra.mework of statistical mechanics (for a review 
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see e.g. Watkin et.al., 1992; Seung et.al., 1992). This approach has mostly been 
applied to single-layer nets (e.g. Gyorgyi and Tishby, 1990; Seung et.al., 1992). 
Extensions to networks with a hidden layer include a model with small hidden 
receptive fields (Sompolinskyand Tishby, 1990), some general results on networks 
whose outputs are continuous functions of their inputs (Seung et.al., 1992; Krogh 
and Hertz, 1992), and calculations for a so-called committee machine (Nilsson, 
1965), a two-layer Boolean network, which implements a majority decision of the 
hidden units (Schwarze et.al., 1992; Schwarze and Hertz, 1992; Mato and Parga, 
1992; Barkai et.al., 1992; Engel et.al., 1992). This model has previomlly been studied 
when learning a function which could be implemented by a simple perceptron (i.e. 
one with no hidden units) in the high-temperature (i.e. high-noise) limit (Schwarze 
et.al., 1992). In most practical applications, however, the function to be learnt is 
not linearly separable. Therefore, we consider here a committee machine trained on 
a rule which itself is defined by another committee machine (the 'teacher' network) 
and hence not linearly separable. 

We calculate the generalization error, the probability of misclassifying an arbitrary 
new input, as a function of 0, the ratio of the number of training examples P to the 
number of adjustable weights in the network. First we present results for the 'tree' 
committee machine, a restricted version of the model in which the receptive fields of 
the hidden units do not overlap. In section 3 we study a fully connected architecture 
allowing for correlations between different hidden units in the student network. In 
both cases we study a large-net limit in which the total number of inputs (N) and 
the number of hidden units (K) both go to infinity, but with K «: N. 

2 Committee machine with nonoverlapping receptive fields 

In this model each hidden unit receives its input from N I K input units, subject to 
the restriction that different hidden units do not share common inputs. Therefore 
there is only one path from each input unit to the output. The hidden-output 
weights are all fixed to +1 as to implement a majority decision of the hidden units. 
The overall network output for inputs 5, E R N/K, 1 = 1, ... , K, to the K branches 
is given by 

0"( {S,}) = sign ( ~ t. 0", (5,») , (1) 

where 0"1 is the output of the lth hidden unit, given by 

0".(5,) = sign ( 1ft w, . 5.) . (2) 

Here W, is the N I K -dimensional weight vector connecting the input with the Ith 
hidden unit. The training examples ({~#-' ,}, r( {~#-' ,}), j.£ = I, ... , P, are generated by 
another committee machine with weight vectors 11, and an overall output r({~#-'I})' 
defined analogously to (1). There are N adjustable weights in the network, and 
therefore we have 0 = PIN. 
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As in the corresponding calculations for simple perceptrons (Gardner and Der
rida, 1988; Gyorgyi and Tishby, 1990; Seung et.al., 1992), we consider a stochastic 
learning algorithm which for long training times yields a Gibbs distribution of net
works. The statistical mechanics approach starts out from the partition function 

Z = jdpo({W,})e-13E({W , }), an integral over weight space with a priori measure 

Po({W,}), weighted with a thermal factor e-13E({w ,l), where E is the total error 
on the training examples 

p 

E({W,}) = I:e[-u({{IL,}) .r({{ILI})]. (3) 
1L=1 

The formal temperature T = 1/ f3 defines the level of noise during the training 
process. For T = 0 this procedure corresponds to simply minimizing the training 
error E. 

From this the average free energy F = -T ((lnZ)), averaged over all possible sets 
of training examples can be calculated using the replica method (for details see 
Schwarze and Hertz, 1992). Like the calculations for simple perceptrons, our theory 
has two sets of order parameters: 

0.13 _ K Wo. WI3 
q, - N-I ·-1 

a. K a. 
RI = N WI ·V,. 

Note that these are the only order parameters in this model. Due to the tree struc
ture no correlations between different hidden units exist. Assuming both replica 
symmetry and 'translational symmetry' we are left with two parameters: q, the 
pattern average of the square of the average input-hidden weight vector, and R, 
the average overlap between this weight vector and a corresponding one for the 
teacher. 

We then obtain expressions for the replica-symmetric free energy of the form 
G(q, R, tI, R) = 0 G1(q, R) + G 2 (q, R, tI, R), where the 'entropy' terms G 2 for the 
continuous- and binary-weight cases are exactly the same as in the simple percep
tron (Gyorgyi and Tishby, 1990, Seung et.al., 1992). In the large-K limit another 
simplification similar to the zero-temperature capacity calculation (Barkai et.al., 
1992) is found in the tree model. The 'energy' term G 1 is the same as the corre
sponding term in the calculation for the simple perceptron, except that the order 
parameters have to be replaced by f(q) = (2/1r) sin- 1 q and f(R) = (2/1r) sin- 1 R. 
The generalization error 

1 
€g = - arccos If(R)] 

7r 
(4) 

can then be obtained from the value of R at the saddle point of the free energy. 

For a network with continuous weights, the solution of the saddle point equations 
yields an algebraically decreasing generalization error. There is no phase transition 
at any value of 0 or T. For T = 0 the asymptotic form of the generalization error 
in powers of 1/0 can be easily obtained as 1.25/0 + ('1/0 2), twice the €g found for 
the simple perceptron in this limit. 
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Figure 1: Learning curve for the large-K tree committee (solid line) with binary 
weights at T = 1. The phase transition occurs at Oc = 1.98, and the spinodal point 
is at 0, = 3.56. The analytic results are compared with Monte Carlo simulations 
with K = 9, N = 75 and T = I, averaged over 10 runs. In each simulation 
the number of training examples is gradually increased (dotted line) and decreased 
(dashed line), respectively. The broken line shows the generalization error for the 
simple perceptron. 

In contrast, the model with binary weights exhibits a phase transition at all tem
peratures from poor to perfect generalization. The corresponding generalization 
error as a function of 0 is shown in figure 1. At small values of 0 the free energy 
has two saddle points, one at R < 1 and the other at R = 1. Initially the solution 
with R < 1 and poor generalization ability has the lower free energy and therefore 
corresponds to the equilibrium state. When the load parameter is increased to a 
critical value Oc, the situation changes and the solution at R = 1 becomes the global 
minimum of the free energy. The system exhibits a first order phase transition to 
the state of perfect generalization. In the region Oc < 0 < 0, the R < 1 solution 
remains metastable and disappears at the spinodal point 0,. We find the same 
qualitative picture at all temperatures, and the complete replica symmetric phase 
diagram is shown in figure 2. The solid line corresponds to the phase transition 
to perfect generalization, and in the region between the solid and the dashed lines 
the R < 1 state of poor generalization is metastable. Below the dotted line, the 
replica-symmetric solution yields a negative entropy for the metastable state. This 
is unphysical in a binary system and replica symmetry has to be broken in this 
region, indicating the existence of many different metastable states. 

The simple perceptron without hidden units corresponds to the case K = 1 in 
our model. A comparison of the generalization properties with the large-K limit 
shows that both limits exhibit qualitatively similar behavior. The locations of the 
thermodynamic transitions and the spinodal line, however, are different and the 
generalization error of the R < 1 state in the large-K committee machine is higher 
than in the simple perceptron. 

The case of general finite K is rather more involved, but the annealed approximation 
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Figure 2: Replica-symmetric phase diagram ofthe large-K tree committee machine 
with binary weights. The solid line shows the locations of the phase transition, and 
the spinodal line is shown dashed. Below the the dotted line the replica-symmetric 
solution is incorrect. 

for finite K indicates a rather smooth K -dependence for 1 < K < 00 (Mato and 
Parga, 1992). 

We performed Monte-Carlo simulations to check the validity of the assumptions 
made in our calculation and found good agreements with our analytic results . Figure 
1 compares the analytic predictions for large K with Monte Carlo simulations for 
K = 9. The simulations were performed for a slowly increasing and decreasing 
training set size, respectively, yielding a hysteresis loop around the location of the 
phase transition. 

3 Fully connected committee machine 

In contrast to the previous model the hidden units in the fully connected committee 
machine receive inputs from the entire input layer. Their output for a given N
dimensional input vector 5 is given by 

0',(5) = sign (.Jw W, . 5), (5) 

while the overall output is again of the form (1). Note that the weight vectors W, 
are now N-dimensional, and the load parameter is given by a = P / (K N). 

For this model we solved the annealed approximation, which replaces ((In Z)) by 
In ((Z)). This approximation becomes exact at high temperatures (high noise level 
during training). For learnable target rules, as in the present problem, previous work 
indicates that the annealed approximation yields qualitatively correct results and 
correctly predicts the shape of the learning curves even at low temperatures (Seung 
et.al., 1992). Performing the average over all possible training sets again leads to 
two sets of order parameters: the overlaps between the student and teacher weight 
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vectors, RlIe = N- 1 W, . V An and the mutual overlaps in the student network CUe = 
N -1 W,, Wk' The weight vectors of the target rule are assumed to be un correlated 
and normalized, N- 1 L . V k = O,k. As in the previous model we make symmetry 
assumptions for the order parameters. In the fully connected architecture we have 
to allow for correlations between different hidden units (RlIe, ClIe :f! 0 for l =f. Ie) but 
also include the possibility of a specialization of individual units (Rll =f. RlIe). This 
is necessary because the ground state of the system with vanishing generalization 
error is achieved for the choice R'k = C'k = O,k. Therefore we make the ansatz 

R'k = R + 1101111, C'k = C + (1 - C)O/k (6) 

and evaluate the annealed free energy of the system using the saddle point method 
(details will be reported elsewhere). The values of the order parameters at the 
minimum of the free energy finally yield the average generalization error fg as a 
function of o. 

For a network with continuous weights and small 0 the global minimum of the free 
energy occurs at 11 = 0 and R '" qK- 3 / 4 ). Hence, for small training sets each 
hidden unit in the student network has a small symmetric overlap to all the hidden 
units in the teacher network. The information obtained from the training examples 
is not sufficient for a specialization of hidden units, and the generalization error 
approaches a plateau. To order 1/VK, this approach is given by 

€g = fO + ~ + 0(1/ K), fO = ~ arccos ( )2/71") ~ 0.206, (7) 

with 'Y({3) = )71"/2 - 1 [(1 - e-~)-1 - foJ/(471"). Figure 3 shows the generalization 
error as a function of 0, including 1/VK-corrections for different values of K. 
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Figure 3: Generalization error for continuous weights and T = 0.5. The approach to 
the residual error is shown including 1/VJ(-corrections for K=5 (solid line), K=ll 
(dotted line), and K=100 (dashed line). The broken line corresponds to the solution 
with nonvanishing 11. 

When the training set size is increased to a critical value 0, of the load parameter, 
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a second minimum of the free energy appears at a finite value of /:::,. close to 1. For 
a larger value Oc > 0, this becomes the global minimum of the free energy and 
the system exhibits a first order phase transition. The generalization error of the 
specialized solution decays smoothly with an asymptotic behavior inversely propor
tional to o. However, the poorly-generalizing symmetric state remains metastable 
for all ° > Oc. Therefore, a stochastic learning procedure starting with /:::,. = 0 will 
first settle into the metastable state. For large N it will take an exponentially long 
time to cross the free energy barrier to the global minimum of the free energy. 

In a network with binary weights and for large K we find the same initial approach 
to a finite generalization error as in (7) for continuous weights. In the large-K limit 
the discreteness of the weights does not influence the behavior for small training 
sets. However, while a perfect match of the student to the teacher network (Rue = 
e'k = Olk) cannot happen for ° < 00 in the continuous model, such a 'freezing' 
is possible in a discrete system. The free energy of the binary model always has 
a local minimum at R'k = e'k = Olk. When the load parameter is increased to a 
critical value, this minimum becomes the global minimum of the free energy, and 
a discontinuous transition into this perfectly generalizing state occurs, just as in 
the binary-weight simple perceptron and the tree described in section 2. As in the 
case of continuous weights, the symmetric solution remains metastable here even 
for large values of o. Figure 4 shows the generalization error for binary weights, 
including 1/v'K-corrections for K = 5. The predictions of the large-K theory 
are compared with Monte Carlo simulations. Although we cannot expect a good 
quantitative agreement for such a small committee, the simulations support our 
qualitative results. Note that the leading order correction to €o in eqn. (7) is only 
small for ° ~ 11K. However, we have obtained a different solution, which is valid 
for ° "-' (111 K). The corresponding generalization error is shown as a dotted line 
in figure 4. 
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Figure 4: Generalization error for binary weights at T = 5. The large-K theory 
for different regions of ° is compared with simulations for K = 5 and N = 45 
averaged over all simulations (+) and simulations, in which no freezing occurred (*), 
respectively. The solid line shows the finite-o results including II v'K -corrections. 
The dotted line shows the small-o solution. 
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Compared to the tree model the fully connected committee machine shows a quali
tatively different behavior. This difference is particularly pronounced in the contin
uous model. While the generalization error of the tree architecture decays smoothly 
for all values of a, the fully connected model exhibits a discontinuous phase transi
tion. Compared to the tree model, the fully connected architecture has an additional 
symmetry, because each permutation of hidden units in the student network yields 
the same output for a given input (Barkai et.al., 1992). This additional degree of 
freedom causes the poor generalization ability for small training sets. Only if the 
training set size is sufficiently large can the hidden units specialize on one of the 
hidden units in the teacher network and achieve good generalization. However, the 
poorly generalizing states remain metastable even for arbitrarily large a. A similar 
phenomenon has also been found in a different architecture with only 2 hidden units 
performing a parity operation (Hansel et.al., 1992). 
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