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Abstract 

A peg-in-hole insertion task is used as an example to illustrate 
the utility of direct associative reinforcement learning methods for 
learning control under real-world conditions of uncertainty and 
noise. Task complexity due to the use of an unchamfered hole 
and a clearance of less than 0.2mm is compounded by the presence 
of positional uncertainty of magnitude exceeding 10 to 50 times the 
clearance. Despite this extreme degree of uncertainty, our results 
indicate that direct reinforcement learning can be used to learn a 
robust reactive control strategy that results in skillful peg-in-hole 
insertions. 

1 INTRODUCTION 

Many control tasks of interest today involve controlling complex nonlinear systems 
under uncertainty and noise. 1 Because traditional control design techniques are not 
very effective under such circumstances, methods for learning control are becoming 
increasingly popular. Unfortunately, in many of these control tasks, it is difficult 
to obtain training information in the form of prespecified instructions on how to 
perform the task. Therefore supervised learning methods are not directly applicable. 
At the same time, evaluating the performance of a controller on the task is usually 
fairly straightforward, and hence these tasks are ideally suited for the application 
of associative reinforcement learning (Barto & Anandan, 1985). 

IFor our purposes, noise can be regarded simply as one of the sources of uncertainty. 
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In associative reinforcement learning, the learning system's interactions with its 
environment are evaluated by a critic, and the goal of the learning system is to 
learn to respond to each input with the action that has the best expected evalua
tion. In learning control tasks, the learning system is the controller, its actions are 
control signals, and the critic's evaluations are based on the performance criterion 
associated with the control task. Two kinds of associative reinforcement learning 
methods, direct and indirect, can be distinguished (e.g., Gullapalli, 1992). Indi
rect reinforcement learning methods construct and use a model of the environment 
and the critic (modeled either separately or together), while direct reinforcement 
learning methods do not. 

We have previously argued (Gullapalli, 1992; Barto & Gullapalli, 1992) that in the 
presence of uncertainty, hand-crafting or learning an adequate model-imperative 
if one is to use indirect methods for training the controller-can be very difficult. 
Therefore, it can be expeditious to use direct reinforcement learning methods in 
such situations. In this paper, a peg-in-hole insertion task is used as an example to 
illustrate the utility of direct associative reinforcement learning methods for learning 
control under real-world conditions of uncertainty. 

2 PEG-IN-HOLE INSERTION 

Peg-in-hole insertion has been widely used by roboticists for testing various ap
proaches to robot control and has also been studied as a canonical robot assembly 
operation (Whitney, 1982; Gustavson, 1984; Gordon, 1986). Although the abstract 
peg-in-hole task can be solved quite easily, real-world conditions of uncertainty due 
to (1) errors and noise in sensory feedback, (2) errors in execution of motion com
mands, and (3) uncertainty due to movement of the part grasped by the robot can 
substantially degrade the performance of traditional control methods. Approaches 
proposed for peg-in-hole insertion under uncertainty can be grouped into two major 
classes: methods based on off-line planning, and methods based on reactive control. 

Off-line planning methods combine geometric analysis of the peg-hole configuration 
with analysis of the task statics to determine motion strategies that will result in 
successful insertion (Whitney, 1982; Gustavson, 1984; Gordon, 1986). In the pres
ence of uncertainty in sensing and control, researchers have suggested incorporating 
the uncertainty into the geometric model of the task in configuration space (e.g., 
Lozano-Perez et al., 1984; Erdmann, 1986; Caine et al., 1989; Donald, 1986). Off
line planning is based on the assumption that a realistic characterization of the 
margins of uncertainty is available, which is a strong assumption when dealing with 
real-world systems. 

Methods based on reactive control, in comparison, try to counter the effects of 
uncertainty with on-line modification of the motion control based on sensory feed
back. Often, compliant motion control is used, in which the trajectory is modified 
by contact forces or tactile stimuli occurring during the motion. The compliant 
behavior either is actively generated or occurs passively due to the physical char
acteristics of the robot (Whitney, 1982; Asada, 1990). However, as Asada (1990) 
points out, many tasks including the peg insertion task require complex nonlin
ear compliance or admittance behavior that is beyond the capability of a passive 
mechanism. Unfortunately, humans find it quite difficult to prespecify appropri-
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ate compliant behavior (Lozano-Perez et al., 1984), especially in the presence of 
uncertainty. Hence techniques for learning compliant behavior can be very useful. 

We demonstrate our approach to learning a reactive control strategy for peg-in-hole 
insertion by training a controller to perform peg-in-hole insertions using a Zebra 
Zero robot. The Zebra Zero is equipped with joint position encoders and a six
axis force sensor at its wrist, whose outputs are all subject to uncertainty. Before 
describing the controller and presenting its performance in peg insertion, we present 
some experimental data quantifying the uncertainty in position and force sensors. 

3 QUANTIFYING THE SENSOR UNCERTAINTY 

In order to quantify the position uncertainty under varying load conditions similar 
to those that occur when the peg is interacting with the hole, we compared the 
sensed peg position with its actual position in cartesian space under different load 
conditions. In one such experiment, the robot was commanded to maintain a fixed 
position under five different loads conditions applied sequentially: no load, and a 
fixed load of O.12Kgf applied in the ±:z: and ±y directions. Under each condition, 
the position and force feedback from the robot sensors, as well as the actual :z:-y 
position of the peg were recorded. 

The sensed and actual :z:-y positions of the peg are shown in Table 1. The sensed :z:-y 
positions were computed from the joint positions sensed by the Zero's joint position 
encoders. As can be seen from the table, there is a large discrepancy between the 
sensed and actual positions of the peg: while the actual change in the peg's position 
under the external load was of the order of 2 to 3mm, the largest sensed change 
in position was less than 0.025mm. In comparison, the clearance between the peg 
and the hole (in the 3D task) was 0.175mm. From observations of the robot, we 
could determine that the uncertainty in position was primarily due to gear backlash. 
Other factors affecting the uncertainty include the posture of the robot arm, which 
affects the way the backlash is loaded, and interactions between the peg and the 
en vironment. 

Table 1: Sensed And Actual Positions Under 5 Different Load Conditions 

Load Condition Sensed :c-y Position (mm) Actual :c-y Position (mm) 

No load position (0.0, 0.000000) (0.0, 0.0) 
With -y load (0.0, -0.014673) (0.0, -2.5) 
With +:c load (0.0,0.000000) (1.9, -0.3) 
With +y load (0.0,0.024646) (-2.9, -0.2) 
With -:c load (0.0,0.010026) (0.3,2.2) 
Final (no load) position (0.0,0.000000) (0.0, -0.6) 

Figure 1 shows 30 time-step samples of the force sensor output for each of the load 
conditions described above. As can be seen from the figure, there is considerable 
sensor noise, especially in recording moments. Although designing a controller that 
can robustly perform peg insertions despite the large uncertainty in sensory input 
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is difficult, our results indicate that a controller can learn a robust peg insertion 
strategy. 
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Figure I: 30 Time-step Samples Of The Sensed Forces and Moments Under 5 
Different Load Conditions. With An Ideal Sensor, The Readings Would Be Constant 
In Each 30 Time-step Interval. 

4 LEARNING PEG-IN-HOLE INSERTION 

Our approach to learning a reactive control strategy for peg insertion under un
certainty is based on active generation of compliant behavior using a nonlinear 
mapping from sensed positions and forces to position commands.2 The controller 
learns this mapping through repeated attempts at peg insertion. 

The Peg Insertion Tasks As depicted in Figure 2, both 2D and 3D versions 
of the peg insertion task were attempted. In the 2D version of the task, the peg 
used was 50mm long and 22.225mm (7/8in) wide, while the hole was 23.8125mm 
(15/16in) wide. Thus the clearance between the peg and the hole was 0.79375mm 
(1/32in). In the 3D version, the peg used was 30mm long and 6mm in diameter, 
while the hole was 6.35mm in diameter. Thus the clearance in the 3D case was 
0.175mm. 

The Controller The controller was implemented as a connectionist network 
that operated in closed loop with the robot so that it could learn a reactive con
trol strategy for performing peg insertions. The network used in the 2D task had 
6 inputs, viz., the sensed positions and forces, (X, Y, e) and (Fx, Fy , Mz), three 

2See also (Gullapalli et al., 1992). 
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The 3D peg Insertion task 
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Figure 2: The 2D And 3D Peg-in-hole Insertion Tasks. 

outputs forming the position command (x, y, 8), and two hidden layers of 15 units 
each. For the 3D task, the network had 11 inputs, the sensed positions and forces, 
(X,Y,Z,E>1,E>2) and (Fx,Fy,F: , l.{r;, My,lV/z ), five outputs forming the position 
command (x, y, Z, 811 82 ), and two hidden layers of 30 units each. 

In both networks, the hidden units used were back-propagation units, while the 
output units used were stochastic real-valued (SRV) reinforcement learning units 
(Gullapalli, 1990). SRV units use a direct reinforcement learning algorithm to find 
the best real-valued output for each input (see Gullapalli (1990) for details). The 
position inputs to the network were computed from the sensed joint positions using 
the forward kinematics equations for the Zero. The force and moment inputs were 
those sensed by the six-axis force sensor. A PD servo loop was used to servo the 
robot to the position output by the network at each time step. 

Training Methodology The controller network was trained in a s~quence of 
trials, each of which started with the peg at a random position and orientation 
with respect to the hole and ended either when the peg was successfully inserted in 
the hole, or when 100 time steps had elapsed. An insertion was termed successful 
when the peg was inserted to a depth of 25mm into the hole. At each time step 
during training, the sensed peg position and forces were input to the network, and 
the computed control output was executed by the robot, resulting in some motion 
of the peg. An evaluation of the controller's performance, r, ranging from 0 to 1 
with 1 denoting the best possible evaluation, was computed based on the new peg 
position and the forces acting on the peg as 

_ { max(O.O, 1.0 - O.Olllposition errorll) if all forces :S 0.5Kgf, 
r - max(O.O, 1.0 - O.Olllposition errorll - O.lFmax) otherwise, 

where Fmax denotes the largest magnitude force component. Thus, the closer the 
sensed peg position was to the desired position with the peg inserted in the hole, 
the higher the evaluation. Large sensed forces, however, reduced the evaluation. 
Using this evaluation, the network adjusted its weights appropriately and the cycle 
was repeated. 
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5 PERFORMANCE RESULTS 

A learning curve showing the final evaluation over 500 consecutive trials on the 2D 
task is shown in Figure 3 (a). The final evaluation levels off close to 1 after about 
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Figure 3: Smoothed Final Evaluation Received And Smoothed Insertion Time (In 
Simulation Time Steps) Taken On Each Of 500 Consecutive Trials On The 2D Peg 
Insertion Task. The Smoothed Curve Was Obtained By Filtering The Raw Data 
Using A Moving-Average Window Of 25 Consecutive Values. 

150 trials because after that amount of training, the controller is consistently able 
to perform successful insertions within 100 time steps. However, performance as 
measured by insertion time continues to improve, as is indicated by the learning 
curve in Figure 3 (b), which shows the time to insertion decreasing continuously 
over the 500 trials. These curves indicate that the controller becomes progressively 
more skillful at peg insertion with training. Similar results were obtained for the 
3D task, although learning was slower in this case. The performance curves for the 
3D task are shown in Figure 4. 

6 DISCUSSION AND CONCLUSIONS 

The high degree of uncertainty in the sensory feedback from the Zebra Zero, cou
pled with the fine motion control requirements of peg-in-hole insertion make the 
task under consideration an example of learning control under extreme uncertainty. 
The positional uncertainty, in particular, is of the order of 10 to 50 times the clear
ance between the peg and the hole and is primarily due to gear backlash. There is 
also significant uncertainty in the sensed forces and moments due to sensor noise. 
Our results indicate that direct reinforcement learning can be used to learn a reac
tive control strategy that works robustly even in the presence of a high degree of 
uncertainty. 
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Figure 4: Smoothed Final Evaluation Received And Smoothed Insertion Time (In 
Simulation Time Steps) Taken On Each Of 800 Consecutive Trials On The 3D Peg 
Insertion Task. The Smoothed Curve Was Obtained By Filtering The Raw Data 
Using A Moving-Average Window Of 25 Consecutive Values. 

Although others have studied similar tasks, in most other work on learning peg-in
hole insertion (e.g., Lee & Kim, 1988) it is assumed that the positional uncertainty 
is about an order of magnitude less than the clearance. Moreover, results are 
often presented using simulated peg-hole systems. Our results indicate that our 
approach works well with a physical system, despite the much higher magnitudes 
of noise and consequently greater degree of uncertainty inherent in dealing with 
physical systems. Furthermore, the success of the direct reinforcement learning 
approach to training the controller indicates that this approach can be useful for 
automatically synthesizing robot control strategies that satisfy constraints encoded 
in the performance evaluations. 
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