
Reinforcement Learning Applied to
Linear Quadratic Regulation

Steven J. Bradtke
Computer Science Department

University of Massachusetts
Amherst, MA 01003

bradtke@cs.umass.edu

Abstract

Recent research on reinforcement learning has focused on algo­
rithms based on the principles of Dynamic Programming (DP).
One of the most promising areas of application for these algo­
rithms is the control of dynamical systems, and some impressive
results have been achieved. However, there are significant gaps
between practice and theory. In particular, there are no con ver­
gence proofs for problems with continuous state and action spaces,
or for systems involving non-linear function approximators (such
as multilayer perceptrons). This paper presents research applying
DP-based reinforcement learning theory to Linear Quadratic Reg­
ulation (LQR), an important class of control problems involving
continuous state and action spaces and requiring a simple type of
non-linear function approximator. We describe an algorithm based
on Q-Iearning that is proven to converge to the optimal controller
for a large class of LQR problems. We also describe a slightly
different algorithm that is only locally convergent to the optimal
Q-function, demonstrating one of the possible pitfalls of using a
non-linear function approximator with DP-based learning.

1 INTRODUCTION

Recent research on reinforcement learning has focused on algorithms based on the
principles of Dynamic Programming. Some of the DP-based reinforcement learning

295

296 Bradtke

algorithms that have been described are Sutton's Temporal Differences methods
(Sutton, 1988), Watkins' Q-Iearning (Watkins, 1989), and Werbos' Heuristic Dy­
namic Programming (Werbos, 1987). However, there are few convergence results
for DP-based reinforcement learning algorithms, and these are limited to discrete
time, finite-state systems, with either lookup-tables or linear function approxima­
tors. Watkins and Dayan (1992) show that the Q-Iearning algorithm converges,
under appropriate conditions, to the optimal Q-function for finite-state Markovian
decision tasks, where the Q-function is represented by a lookup-table. Sutton (1988)
and Dayan (1992) show that the linear TD(A) learning rule, when applied to Marko­
vian decision tasks where the states are representated by a linearly independent set
of feature vectors, converges in the mean to Vu , the value function for a given con­
trol policy U. Dayan (1992) also shows that linear TD(A) with linearly dependent
state representations converges, but not to Vu , the function that the algorithm is
supposed to learn.

Despite the paucity of theoretical results, applications have shown promise. For
example, Tesauro (1992) describes a system using TD(A) that learns to play cham­
pionship level backgammon entirely through self-playl. It uses a multilayer per­
ceptron (MLP) trained using back propagation as a function approximator. Sofge
and White (1990) describe a system that learns to improve process control with
continuous state and action spaces. Neither of these applications, nor many similar
applications that have been described, meet the convergence requirements of the
existing theory. Yet they produce good results experimentally. We need to extend
the theory of DP-based reinforcement learning to domains with continuous state
and action spaces, and to algorithms that use non-linear function approximators.

Linear Quadratic Regulation (e.g., Bertsekas, 1987) is a good candidate as a first
attempt in extending the theory of DP-based reinforcement learning in this man­
ner. LQR is an important class of control problems and has a well-developed theory.
LQR problems involve continuous state and action spaces, and value functions can
be exactly represented by quadratic functions. The following sections review the
basics of LQR theory that will be needed in this paper, describe Q-functions for
LQR, describe the Q-Iearning algorithm used in this paper, and describe an algo­
rithm based on Q-Iearning that is proven to converge to the optimal controller for a
large class of LQR problems. We also describe a slightly different algorithm that is
only locally convergent to the optimal Q-function, demonstrating one of the possible
pitfalls of using a non-linear function approximator with DP-based learning.

2 LINEAR QUADRATIC REGULATION

Consider the deterministic, linear, time-invariant, discrete time dynamical system
given by

:Z:t+l f(:Z:t,Ut)

A:Z:t + BUt

Ut U :Z:t,

where A, B, and U are matrices of dimensions n x n, n x m, and m x n respectively.
:Z:t is the state of the system at time t, and Ut is the control input to the system at

1 Backgammon can be viewed as a Markovian decision task.

Reinforcement Learning Applied to Linear Quadratic Regulation 297

time t. U is a linear feedback controller. The cost at every time step is a quadratic
function of the state and the control signal:

rt r(zt, ud

x~Ext + u~Fut,
where E and F are symmetric, positive definite matrices of dimensions n x nand
m x m respectively, and Z' denotes z transpose.

The value Vu (xe) of a state Zt under a given control policy U is defined as the
discounted sum of all costs that will be incurred by using U for all times from
t onward, i.e., Vi,(ze) = 2::o'Y'rt+i, where 0 :s: 'Y :s: 1 is the discount factor.
Linear-quadratic control theory (e.g., Bertsekas, 1987) tells us that Vi, is a quadratic
function of the states and can be expressed as Vu(zd = z~Kuzt, where Ku is the
n x n cost matrix for policy U. The optimal control policy, U~, is that policy for
which the value of every state is minimized. We denote the cost matrix for the
optimal policy by K-.

3 Q-FUNCTIONS FOR LQR

Watkins (1989) defined the Q-function for a given control policy U as Qu(z, u) =
r(z, u) + 'YVu(f(x, u)). This can be expressed for an LQR problem as

Qu(z, u) r(z, u) + 'YVu(f(z, u))

Zl Ez + u' Fu + 'Y(Az + BU)' Ku(Az + Bu)

[]' [E + 'YA' Ku A 'YA' Ku B 1 []
Z,U 'YB' Ku A F + 'YB' Ku B z, u ,

where [z,u] is the column vector concatenation of the column vectors z and u.

Define the parameter matrix H u as

H - [E+'YAIKU A
u - 'YB' Ku A

Hu is a symmetric positive definite matrix of dimensions (n + m) x (n + m).

4 Q-LEARNING FOR LQR

(1)

(2)

The convergence results for Q-learning (Watkins & Dayan, 1992) assume a dis­
crete time, finite-state system, and require the use of lookup-tables to represent
the Q-function. This is not suitable for the LQR domain, where the states and
actions are vectors of real numbers. Following the work of others, we will use a
parameterized representation of the Q-function and adjust the parameters through
a learning process. For example, Jordan and Jacobs (1990) and Lin (1992) use
MLPs trained using backpropagation to approximate the Q-function. Notice that
the function Qu is a quadratic function of its arguments, the state and control ac­
tion, but it is a linear function of the quadratic combinations from the vector [z,u].
For example, if z = [Zb Z2], and 1.1. = [1.1.1], then Qu(z,u) is a linear function of

298 Bradtke

the vector [x~, x~, ut, XIX2, XIUl, X2Ul]' This fact allows us to use linear Recursive
Least Squares (RLS) to implement Q-Iearning in the LQR domain.

There are two forms of Q-Iearning. The first is the rule \Vatkins described in his
thesis (Watkins, 1989) . Watkins called this rule Q-Iearning, but we will refer to it
as optimizing Q-Iearning because it attempts to learn the Q-function of the optimal
policy directly. The optimizing Q-Iearning rule may be written as

Qt+I(Xt, Ut) = Qt(:et, Ut) + a [r(:et, ut) + 'Y mJn Qt(:et+l, a) - Qt(:et, Ut)] , (3)

where Qt is the tth approximation to Q". The second form of Q-Iearning attempts
to learn Qu, the Q-function for some designated policy, U. U mayor may not be
the policy that is actually followed during training. This policy-based Q-learning
rule may be written as

Qt+I (:et, Ut) = Qt(:et, Ut) + a [r(:et, Ut) + 'YQd :et+l, U :et+l) - Qt(:et, ue)] , (4)

where Qt is the t lh approximation to Qu. Bradtke, Ydstie, and Barto (paper in
preparation) show that a linear RLS implementation of the policy-based Q-Iearning
rule will converge to Qu for LQR problems.

5 POLICY IMPROVEMENT FOR LQR

Given a policy Uk, how can we find an improved policy, Uk+l? Following Howard
(1960) , define Uk+l as

Uk+lX = argmin [r(x, '1.£) + 'Y11ul< U(:e, '1.£))].
u

But equation (1) tells us that this can be rewritten as

Uk+I:e = argmin QUI< (:e, u).
u

We can find the minimizing '1.£ by taking the partial derivative of QUI«:e, u) with
respect to '1.£, setting that to zero, and solving for u. This yields

'1.£ = -'Y (F + 'YB' KUI<B)-l B' KUI<A:e. , .,
V'

UI<+l

Using (2), Uk+l can be written as

Uk+l = -H:;/ H21 .

Therefore we can use the definition of the Q-function to compute an improved
policy.

6 POLICY ITERATION FOR LQR

The RLS implementation of policy-based Q-Iearning (Section 4) and the policy
improvement process based on Q-functions (Section 5) are the key elements of the
policy iteration algorithm described in Figure 1. Theorem 1, proven in (Bradtke,

Reinforcement Learning Applied to Linear Quadratic Regulation 299

Y dstie, & Barto, in preparation), shows that the sequence of policies generated by
this algorithm converges to the optimal policy. Standard policy iteration algorithms,
such as those described by Howard (1960) for discrete time, finite state Markovian
decision tasks, or by Bertsekas (1987) and Kleinman (1968) for LQR problems,
require exact knowledge of the system model. Our algorithm requires no system
model. It only requires a suitably accurate estimate of HUk •

Theorem 1: If (1) {A, B} is controllable, (2) Un is stabilizing, and (3) the control
signal, which at time step t and policy iteration step k is UJ,-Xt plus some "exploration
factor", is strongly persistently exciting, then there exists a number N such that
the sequence of policies generated by the policy iteration algorithm described in
Figure 1 will converge to UX when policy updates are performed at most every N
time steps.

Initialize the Q-function parameters, HII •

t = 0, k = o.
do forever {

}

Initialize the Recursive Least Squares estimator.
for i = 1 to N {

}

• Ut = UkXt + et, where et is the "exploration" com-
ponent of the control signal.

• Apply Ut to the system, resulting in state Xt+l.

• Define at+l = UkXt+l.

• Update the Q-function parameters, H k using the
Recursive Least Squares implementation of the
policy-based Q-learning rule, equation (4).

• t=t+1.

Policy improvement based on Hk :

Initialize parameters Hk+l = Hk .

k=k+1

Figure 1: The Q-function based policy iteration algorithm. It starts with the system
in some initial state Xo and with some stabilizing controller Uo. k keeps track of the
number of policy iteration steps. t keeps track of the total number of time steps. i
counts the number of time steps since the last change of policy. vVhen i = N, one
policy improvement step is executed.

Figure 2 demonstrates the performance of the Q-function based policy iteration
algorithm. We do not know how to characterize a persistently exciting exploratory
signal for this algorithm. Experimentally, however, a random exploration signal
generated from a normal distribution has worked very well, even though it does not
meet condition (3) of the theorem. The system is a 20-dimensional discrete time
approximation of a flexible beam supported at both ends. There is one control point.
The control signal is a scalar representing acceleration to be applied at that point.
Uo is an arbitrarily selected stabilizing controller for the system. Xo is a random

300 Bradtke

point in a neighborhood around 0 E n20. \Ve used a normal random variable with
mean 0 and variance 1 as the exploratory signal. There are 231 parameters to be
estimated for this system, so we set N = 500, approximately twice that. Panel A
of Figure 2 shows the norm of the difference between the current controller and the
optimal controller. Panel B of Figure 2 shows the norm of the difference between
the estimate of the Q-function for the current controller and the Q-function for
the optimal controller. After only eight policy iteration steps the Q-function based
policy iteration algorithm has converged close enough to U~ and Q~ that further
improvements are limited by the machine precision.

A

1 ... 03,......,......_ -.......,. _,

'00
10

I '\
0.1 \

0.01 .

= ,..0) i.\
.ill 1...04
~ 1..05 1

~::: \.
- 1..06

1...09 \

:::~ \,
1 •• 2 ~'''~~ ----' ... u y ~ --- -- -.
1~1" O!--.....-.~IO----=2'::-0 --f::10 ------!40::--~30

k. number of poIi"" ileration ste,.

B

10+00,...... _-.-_ _-...._........,

100 \
10
I \

= I~! i\
.. , '..0<
~ 1..03

:::: \\
& 1..01

1..09 L ~ _ ~ ~ ~/'.A~ .
1 .. 10 --~ -- "v-'.... ..- ""'-"1
, .. u
1,.-12
1 .. 13

1 .. 14 O!--.....-."7::IO---:20::---30:!::--~""~'--!30

k. number of poll"" Iteration .t~

Figure 2: Performance of the Q-function based policy iteration algorithm on a
discretized beam system.

7 THE OPTIMIZING Q-LEARNING RULE FOR LQR

Policy iteration would seem to be a slow method. It has to evaluate each policy
before it can specify a new one. Why not do as VVatkins' optimizing Q-Iearning
rule does (equation 3), and try to learn Q- directly? Figure 3 defines this algorithm
precisely. This algorithm does not update the policy actually used during training.
It only updates the estimate of Q-. The system is started in some initial state :Z:o
and some stabilizing controller Uo is specified as the controller to be used during
training.

To what will this algorithm converge, if it does converge? A fixed point of this
algorithm must satisfy

[]' [H 11 H 12] [] :z:, u H21 H22 :Z:, u =

:z:'E:z:+u'Eu+'Y[A:z:+Bu,a]' [~~~ ~~~] [A:z:+Bu,a), (5)

where a = -H:;/ H21(A:z:+Bu). Equation (5) actually specifies (n+m)(n+m+ 1)/2
polynomial equations in (n + m)(n + m + 1)/2 unknowns (remember that Hu is
symmetric). We know that there is at least one solution, that corresponding to the
optimal policy, but there may be other solutions as well.

As an example of the possibility of multiple solutions, consider the I-dimensional
system with A = B = E = F = [1) and l' = 0.9. Substituting these values into

Reinforcement Learning Applied to Linear Quadratic Regulation 301

Initialize the Q-function parameters, ilu.
Initialize Recursive Least Squares estimator.
t = o.
do forever {

}

• Ut = UOXt + et, where et is the "exploration" com­
ponent of the control signal.

• Apply Ut to the system, resulting in state Xt+ 1.
A -1 A

• Define at+1 = -H22 H 21 Xt+1.

• Update the Q-function parameters, fIt, using the
Recursive Least Squares implementation of the op­
timizing Q-Iearning rule, equation (3).

• t=t+1.

Figure 3: The optimizing Q-learning rule in the LQR domain. Uo is the policy
followed during training. t keeps track of the total number of time steps.

equation (5) and solving for the unknown parameters yields two solutions. They
are

[2.4296
1.4296

1.4296] d [0.3704
2.4296 an -0.6296

-0.6296]
0.3704 .

The first solution is Q-. The second solution, if used to define an "improved" policy
as describe in Section 5, results in a destablizing controller. This is certainly not a
desirable result. Experiments show that the algorithm in Figure 3 will converge to
either of these solutions if the initial parameter estimates are close enough to that
solution. Therefore, this method of using Watkins' Q-learning rule directly on an
LQR problem will not necessarily converge to the optimal Q-function.

8 CONCLUSIONS

In this paper we take a first step toward extending the theory of DP-based re­
inforcement learning to domains with continuous state and action spaces, and to
algorithms that use non-linear function approximators. We concentrate on the
problem of Linear Quadratic Regulation. We describe a policy iteration algorithm
for LQR problems that is proven to converge to the optimal policy. In contrast to
standard methods of policy iteration, it does not require a system model. It only
requires a suitably accurate estimate of Hu/c. This is the first result of which we
are aware showing convergence of a DP-based reinforcement learning algorithm in
a domain with continuous states and actions. We also describe a straightforward
implementation of the optimizing Q-Iearning rule in the LQR domain. This algo­
rithm is only locally convergent to Q-. This result demonstrates that we cannot
expect the theory developed for finite-state systems using lookup-tables to extend
to continuous state systems using parameterized function representations.

302 Bradtke

The convergence proof for the policy iteration algorithm described in this paper
requires exact matching between the form of the Q-function for LQR problems and
the form of the function approximator used to learn that function. Future work will
explore convergence of DP-based reinforcement learning algorithms when applied
to non-linear systems for which the form of the Q-functions is unknown.

Acknowledgements

The author thanks Andrew Barto, B. Erik Ydstie, and the ANW group for their
contributions to these ideas. This work was supported by the Air Force Office of
Scientific Research, Bolling AFB, under Grant AFOSR-89-0526 and by the National
Science Foundation under Grant ECS-8912623.

References

[1] D. P. Bertsekas. Dynamic Programming: Deterministic and Stochastic Models .
Prentice Hall, Englewood Cliffs, N J, 1987.

[2] S. J. Bradtke, B. E. Ydstie, and A. G. Barto. Convergence to optimal cost of
adaptive policy iteration. In preparation.

[3] P. Dayan. The convergence ofTD(A) for general A. Machine Learning, 1992.

[4] R. A. Howard. Dynamic Programming and Markov Processes. John Wiley &
Sons, Inc., New York, 1960.

[5] M. 1. Jordan and R. A. Jacobs. Learning to control an unstable system with
forward modeling. In Advances in Neural Information Processing Systems 2.
Morgan Kaufmann Publishers, San Mateo, CA, 1990.

[6] D. L. Kleinman. On an iterative technique for Riccati equation computations.
IEEE Transactions on Automatic Control, pages 114-115, February 1968.

[7] L.-J . Lin. Self-improving reactive agents based on reinforcement learning, plan­
ning and teaching. Machine Learning, 1992.

[8] D. A. Sofge and D. A. White. Neural network based process optimization and

control. In Proceedings of the 29th IEEE Conference on Decision and Control,
Honolulu, Hawaii, December 1990.

[9] R. S. Sutton. Learning to predict by the method of temporal differences.
Alachine Learning, 3:9-44, 1988.

[10] G. J. Tesauro. Practical issues in temporal difference learning. Machine Learn­
ing, 8{3/4):257-277, May 1992.

[11] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, Cambridge
University, Cambridge, England, 1989.

[12] C. J. C. H. Watkins and P. Dayan. Q-Iearning. Machine Learning, 1992.

[13] P. J . Werbos. Building and understanding adaptive systems: A statisti­
cal/numerical approach to factory automation and brain research. IEEE Trans­
actions on Systems, Man, and Cybernetics, 17(1):7-20, 1987.

