Improving the Performance of Radial Basis Function Networks by Learning Center Locations

Part of Advances in Neural Information Processing Systems 4 (NIPS 1991)

Bibtex Metadata Paper

Authors

Dietrich Wettschereck, Thomas Dietterich

Abstract

Three methods for improving the performance of (gaussian) radial basis function (RBF) networks were tested on the NETtaik task. In RBF, a new example is classified by computing its Euclidean distance to a set of centers chosen by unsupervised methods. The application of supervised learning to learn a non-Euclidean distance metric was found to reduce the error rate of RBF networks, while supervised learning of each center's vari(cid:173) ance resulted in inferior performance. The best improvement in accuracy was achieved by networks called generalized radial basis function (GRBF) networks. In GRBF, the center locations are determined by supervised learning. After training on 1000 words, RBF classifies 56.5% of letters correct, while GRBF scores 73.4% letters correct (on a separate test set). From these and other experiments, we conclude that supervised learning of center locations can be very important for radial basis function learning.