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Abstract 

Learning is posed as a problem of function estimation, for which two princi­
ples of solution are considered: empirical risk minimization and structural 
risk minimization. These two principles are applied to two different state­
ments of the function estimation problem: global and local. Systematic 
improvements in prediction power are illustrated in application to zip-code 
recognition. 

1 INTRODUCTION 

The structure of the theory of learning differs from that of most other theories for 
applied problems. The search for a solution to an applied problem usually requires 
the three following steps: 

1. State the problem in mathematical terms. 
2. Formulate a general principle to look for a solution to the problem. 
3. Develop an algorithm based on such general principle. 

The first two steps of this procedure offer in general no major difficulties; the 
third step requires most efforts, in developing computational algorithms to solve 
the problem at hand. 

In the case of learning theory, however, many algorithms have been developed, but 
we still lack a clear understanding of the mathematical statement needed to describe 
the learning procedure, and of the general principle on which the search for solutions 

831 



832 Vapnik 

should be based. This paper is devoted to these first two steps, the statement of 
the problem and the general principle of solution. 

The paper is organized as follows. First, the problem of function estimation is 
stated, and two principles of solution are discussed: the principle of empirical risk 
minimization and the principle of structural risk minimization. A new statement 
is then given: that of local estimation of function, to which the same principles are 
applied. An application to zip-code recognition is used to illustrate these ideas. 

2 FUNCTION ESTIMATION MODEL 

The learning process is described through three components: 

1. A generator of random vectors x, drawn independently from a fixed but unknown 
distribution P(x). 
2. A supervisor which returns an output vector y to every input vector x, according 
to a conditional distribution function P(ylx), also fixed but unknown. 
3. A learning machine capable of implementing a set of functions !(x, w), wE W. 

The problem of learning is that of choosing from the given set of functions the one 
which approximates best the supervisor's response. The selection is based on a 
training set of e independent observations: 

(1) 

The formulation given above implies that learning corresponds to the problem of 
function approximation. 

3 PROBLEM OF RISK MINIMIZATION 

In order to choose the best available approximation to the supervisor's response, 
we measure the loss or discrepancy L(y, !(x, w» between the response y of the 
supervisor to a given input x and the response !(x, w) provided by the learning 
machine. Consider the expected value of the loss, given by the risk functional 

R(w) = J L(y, !(x, w»dP(x,y). (2) 

The goal is to minimize the risk functional R( w) over the class of functions 
!(x, w), w E W. But the joint probability distribution P(x, y) = P(ylx )P(x) 
is unknown and the only available information is contained in the training set (1). 

4 EMPIRICAL RISK MINIMIZATION 

In order to solve this problem, the following induction principle is proposed: the 
risk functional R( w) is replaced by the empirical risk functional 

1 l 

E(w) = i LL(Yi,!(Xi'W» 
i=l 

(3) 
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constructed on the basis of the training set (1). The induction principle of empirical 
risk minimization (ERM) assumes that the function I(x, wi) ,which minimizes E(w) 
over the set w E W, results in a risk R( wi) which is close to its minimum. 

This induction principle is quite general; many classical methods such as least square 
or maximum likelihood are realizations of the ERM principle. 

The evaluation of the soundness of the ERM principle requires answers to the fol­
lowing two questions: 

1. Is the principle consistent? (Does R( wi) converge to its minimum value on the 
set wE W when f- oo?) 

2. How fast is the convergence as f increases? 

The answers to these two questions have been shown (Vapnik et al., 1989) to be 
equivalent to the answers to the following two questions: 

1. Does the empirical risk E( w) converge uniformly to the actual risk R( w) over 
the full set I(x, w), wE W? Uniform convergence is defined as 

Prob{ sup IR(w) - E(w)1 > £} - 0 as f - 00. (4) 
wEW 

2. What is the rate of convergence? 

It is important to stress that uniform convergence (4) for the full set of functions is 
a necessary and sufficient condition for the consistency of the ERM principle. 

5 VC-DIMENSION OF THE SET OF FUNCTIONS 

The theory of uniform convergence of empirical risk to actual risk developed in 
the 70's and SO's, includes a description of necessary and sufficient conditions as 
well as bounds for the rate of convergence (Vapnik, 19S2). These bounds, which 
are independent of the distribution function P(x,y), are based on a quantitative 
measure of the capacity of the set offunctions implemented by the learning machine: 
the VC-dimension of the set. 

For simplicity, these bounds will be discussed here only for the case of binary pat­
tern recognition, for which y E {O, 1} and I(x, w), wE W is the class of indicator 
functions. The loss function takes only two values L(y, I(x, w)) = 0 if y = I(x, w) 
and L(y, I(x, w)) = 1 otherwise. In this case, the risk functional (2) is the prob­
ability of error, denoted by pew). The empirical risk functional (3), denoted by 
v(w), is the frequency of error in the training set. 

The VC-dimension of a set of indicator functions is the maximum number h of 
vectors which can be shattered in all possible 2h ways using functions in the set. 
For instance, h = n + 1 for linear decision rules in n-dimensional space, since they 
can shatter at most n + 1 points. 

6 RATES OF UNIFORM CONVERGENCE 

The notion of VC-dimension provides a bound to the rate of uniform convergence. 
For a set of indicator functions with VC-dimension h, the following inequality holds: 



834 Vapnik 

2fe h 2 
Prob{ SUp IP(w) - v(w)1 > c} < (-h) exp{-e fl· 

wEW 

It then follows that with probability 1 - T}, simultaneously for all w E W, 

pew) < v(w) + Co(f/h, T}), 

with confidence interval 

C (f/h ) _ . Ih(1n 21/h + 1) - In T} 
o ,T}-V f . 

(5) 

(6) 

(7) 

This important result provides a bound to the actual risk P( w) for all w E W, 
including the w· which minimizes the empirical risk v(w). 

The deviation IP(w) - v(w)1 in (5) is expected to be maximum for pew) close 
to 1/2, since it is this value of pew) which maximizes the error variance u(w) = 
J P( w)( 1 - P( w)). The worst case bound for the confidence interval (7) is thus 
likely be controlled by the worst decision rule. The bound (6) is achieved for the 
worst case pew) = 1/2, but not for small pew), which is the case of interest. A 
uniformly good approximation to P( w) follows from considering 

pew) - v(w) 
Prob{ sup > e}. 

wEW (j(w) 
(8) 

The variance of the relative deviation (P( w) - v( w))/ (j( w) is now independent of w. 
A bound for the probability (8), if available, would yield a uniformly good bound 
for actual risks for all P( w). 

Such a bound has not yet been established. But for pew) « 1, the approximation 
(j(w) ~ JP(w) is true, and the following inequality holds: 

pew) - v(w) 2le h e2 f 
Prob{ sup > e} < (-) exp{--}. (9) 

wEW JP(w) h 4 

It then follows that with probability 1 - T}, simultaneously for all w E W, 

pew) < v(w) + CI(f/h, v(w), T}), (10) 

with confidence interval 

CI(l/h,v(w),T}) =2 (h(ln2f/h;l)-lnT}) (1+ 1 v(w)f ) 
+ h(1n 2f/h + 1) -In T} . 

(11) 
Note that the confidence interval now depends on v( w), and that for v( w) = 0 it 
reduces to 

CI(f/ h, 0, T}) = 2C'5(f/ h, T}), 
which provides a more precise bound for real case learning. 

7 STRUCTURAL RISK MINIMIZATION 

The method of ERM can be theoretically justified by considering the inequalities 
(6) or (10). When l/h is large, the confidence intervals Co or C1 become small, and 
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can be neglected . The actual risk is then bound by only the empirical risk, and the 
probability of error on the test set can be expected to be small when the frequency 
of error in the training set is small. 

However, if ljh is small, the confidence interval cannot be neglected, and even 
v( w) = 0 does not guarantee a small probability of error. In this case the minimiza­
tion of P( w) requires a new principle, based on the simultaneous minimization of 
v( w) and the confidence interval. It is then necessary to control the VC-dimension 
of the learning machine. 

To do this, we introduce a nested structure of subsets Sp = {lex, w), wE Wp}, such 
that 

SlCS2C ... CSn . 

The corresponding VC-dimensions of the subsets satisfy 

hl < h2 < ... < hn . 

The principle of structure risk minimization (SRM) requires a two-step process: the 
empirical risk has to be minimized for each element of the structure. The optimal 
element S* is then selected to minimize the guaranteed risk, defined as the sum 
of the empirical risk and the confidence interval. This process involves a trade-off: 
as h increases the minimum empirical risk decreases, but the confidence interval 
mcreases. 

8 EXAMPLES OF STRUCTURES FOR NEURAL NETS 

The general principle of SRM can be implemented in many different ways . Here 
we consider three different examples of structures built for the set of functions 
implemented by a neural network . 

1. Structure given by the architecture of the neural network. Consider an 
ensemble of fully connected neural networks in which the number of units in one of 
the hidden layers is monotonically increased. The set of implement able functions 
makes a structure as the number of hidden units is increased. 

2. Structure given by the learning procedure. Consider the set of functions 
S = {lex, w), w E W} implementable by a neural net of fixed architecture. The 
parameters {w} are the weights of the neural network. A structure is introduced 
through Sp = {lex, w), Ilwll < Cp } and C l < C2 < ... < Cn. For a convex 
loss function, the minimization of the empirical risk within the element Sp of the 
structure is achieved through the minimizat.ion of 

1 l 

E(w"P) = l LL(Yi,!(Xi'W» +'P llwI12 

i=l 

with appropriately chosen Lagrange multipliers II > 12 > ... > In' The well-known 
"weight decay" procedure refers to the minimization of this functional. 

3. Structure given by preprocessing. Consider a neural net with fixed ar­
chitecture. The input representation is modified by a transformation z = K(x, 13), 
where the parameter f3 controls the degree of the degeneracy introduced by this 
transformation (for instance f3 could be the width of a smoothing kernel). 
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A structure is introduced in the set of functions S = {!(I«x, 13), w), w E W} 
through 13 > CP1 and Cl > C2 > ... > Cn· 

9 PROBLEM OF LOCAL FUNCTION ESTIMATION 

The problem of learning has been formulated as the problem of selecting from the 
class of functions !(x, w), w E W that which provides the best available approxi­
mation to the response of the supervisor. Such a statement of the learning problem 
implies that a unique function !( x, w·) will be used for prediction over the full input 
space X. This is not necessarily a good strategy: the set !(x, w), w E W might 
not contain a good predictor for the full input space, but might contain functions 
capable of good prediction on specified regions of input space. 

In order to formulate the learning problem as a problem of local function approxi­
mation, consider a kernel I«x - Xo, b) ~ 0 which selects a region of input space of 
width b, centered at xo. For example, consider the rectangular kernel, 

I< (x _ x b) = { 1 if Ix - ~o I < b 
,. 0, 0 otherwIse 

and a more general general continuous kernel, such as the gaussian 

r (x-xO)2 
/ig(x-xo,b)=exp-{ b2 }. 

The goal is to minimize the local risk functional 

J K(x - Xo, b) 
R(w, b, xo) = L(y, !(x, w» K(xo, b) dP(x, V)· (12) 

The normalization is defined by 

K(xo, b) = J K(x - Xo, b) dP(x). (13) 

The local risk functional (12) is to be minimized over the class of functions 
!(x, w), w E Wand over all possible neighborhoods b E (0,00) centered at xo. 
As before, the joint probability distribution P( x, y) is unknown, and the only avail­
able information is contained in the training set (1). 

10 EMPIRICAL RISK MINIMIZATION FOR LOCAL 
ESTIMATION 

In order to solve this problem, the following induction principle is proposed: for 
fixed b, the local risk functional (12) is replaced by the empirical risk functional 

1 ~ K(Xi - Xo, b) 
E(w,b,xo) = l L..tL(Yj,!(Xj,w» 1« b) , 

i=l Xo, 
(14) 
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constructed on the basis of the training set. The empirical risk functional (14) is 
to be minimized over w E W. In the simplest case, the class of functions is that of 
constant functions, I(x, w) = C( w). Consider the following examples: 

1. K-Nearest Neighbors Method: For the case of binary pattern recogni­
tion, the class of constant indicator functions contains only two functions: either 
I(x, w) = ° for all x, or I(x, w) = 1 for all x. The minimization of the empirical 
risk functional (14) with the rectangular kernel Kr(x-xo,b) leads to the K-nearest 
neighbors algorithm. 

2. Watson-Nadaraya Method: For the case y E R, the class of constant func­
tions contains an infinite number of elements, I(x,w) = C(w), C(w) E R. The 
minimization of the empirical risk functional (14) for general kernel and a quadratic 
loss function L(y, I(x, w)) = (y - I(x, w))2 leads to the estimator 

l 

I( ) - "". K(Xi - Xo, b) 
Xo - ~YI l. , 

i=1 L;=I/\ (x; - xo, b) 

which defines the Watson-Nadaraya algorithm. 

These classical methods minimize (14) with a fixed b over the class of constant 
functions. The supervisor's response in the vicinity of Xo is thus approximated by a 
constant, and the characteristic size b of the neighborhood is kept fixed, independent 
of Xo. 

A truly local algorithm would adjust the parameter b to the characteristics of the 
region in input space centered at Xo . Further improvement is possible by allowing 
for a richer class of predictor functions I(x, w) within the selected neighborhood. 
The SRM principle for local estimation provides a tool for incorporating these two 
features . 

11 STRUCTURAL RISK MINIMIZATION FOR LOCAL 
ESTIMATION 

The arguments that lead to the inequality (6) for the risk functional (2) can be 
extended to the local risk functional (12), to obtain the following result: with 
probability 1 - T}, and simultaneously for all w E Wand all b E (0,00) 

R(w,b,xo) < E(w,b,xo) + C2(flh, b, T}). (15) 

The confidence interval C2(flh, b, T}) reduces to Co(llh, T}) in the b -+ 00 limit. 

As before, a nested structure is introduced in the class of functions, and the empirical 
risk (14) is minimized with respect to both w E Wand bE (0,00) for each element 
of the structure. The optimal element is then selected to minimize the guaranteed 
risk, defined as the sum of the empirical risk and the confidence interval. For fixed 
b this process involves an already discussed trade-off: as h increases, the empirical 
risk decreases but the confidence interval increases. A new trade-off appears by 
varying b at fixed h: as b increases the empirical risk increases, but the confidence 
interval decreases. The use of b as an additional free parameter allows us to find 
deeper minima of the guaranteed risk. 
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12 APPLICATION TO ZIP-CODE RECOGNITION 

We now discuss results for the recognition of the hand written and printed digits in 
the US Postal database, containing 9709 training examples and 2007 testing exam­
ples. Human recognition of this task results in an approximately 2.5% prediction 
error (Sackinger et al., 1991). 

The learning machine considered here is a five-layer neural network with shared 
weights and limited receptive fields. When trained with a back-propagation algo­
rithm for the minimization of the empirical risk, the network achieves 5.1% predic­
tion error (Le Cun et al., 1990). 

Further performance improvement with the same network architecture has required 
the introduction a new induction principle. Methods based on SRM have achieved 
prediction errors of 4.1% (training based on a double-back-propagation algorithm 
which incorporates a special form of weight decay (Drucker, 1991» and 3.95% (using 
a smoothing transformation in input space (Simard, 1991». 

The best result achieved so far, of 3.3% prediction error, is based on the use of the 
SRM for local estimation of the predictor function (Bottou, 1991). 

It is obvious from these results that dramatic gains cannot be achieved through 
minor algorithmic modifications, but require the introduction of new principles. 
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