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Abstract 

We derive criteria for training adaptive classifier networks to perform unsu
pervised data analysis. The first criterion turns a simple Gaussian classifier 
into a simple Gaussian mixture analyser . The second criterion, which is 
much more generally applicable, is based on mutual information. It simpli
fies to an intuitively reasonable difference between two entropy functions, 
one encouraging 'decisiveness,' the other 'fairness' to the alternat.ive in
terpretations of the input. This 'firm but fair' criterion can be applied 
to any network that produces probability-type outputs, but it does not 
necessarily lead to useful behavior. 

1 Unsupervised Classification 

One of the main distinctions made in discussing neural network architectures, and 
pattern analysis algorithms generally, is between supervised and unsupervised data 
analysis. We should therefore be interested in any method of building bridges 
between techniques in these two categories. For instance, it is possible to use an 
unsupervised system such as a Boltzmann machine to learn the joint distribution of 
inputs and a teacher's classificat.ion labels. The particular type of bridge we seek is a 
method of taking a supervised pattern classifier and turning it into an unsupervised 
data analyser. That is, we are interested in methods of "bootstrapping" classifiers. 

Consider a classifier system. Its input is a vector x, and the output is a probability 
vector y(x). (That is, the elements ofy are positive and sum to 1.) The elements of 
y, (Yi (x), i = 1 ... Nc ) are to be taken as the probabilities that x should be assigned 
to each of Nc classes. (Note that our definition of classifier does not include a 
decision process.) 
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To enforce the conditions we require for the output values, v,,'e recommend using a 
generalised logistic (normalised exponential, or SoftMax) output stage. \Ve call t.he 
unnormalised log probabilities of the classes ai, and the softmax performs: 

Yi = ea,/Z with Z = Lea, (1 ) 

Normally the parameters of such a system would be adjust.ed using a training set 
comprising examples of inputs and corresponding classes, {(Xi, cd}, vVe assume that 
the system includes means t.o convert derivatives of a t.raining criterion with respect 
to the outputs into a form suitable for adjusting the values of the parameters, for 
instance by "backpropagation", 

Imagine however that we have unlabelled data, X m , m. = 1, , ,Nts , and wish to use 
it to 'improve' the classifier. We could think of this as self-supervised learning, 
to hone an already good system on lots of easily-obtained unlabelled real-world 
data, or to adapt to a slowly changing environment, or as a way of turning a 
classifier int.o some sort of cluster analyser. (Just what kind depends on details of 
the classifier itself.) The ideal method would be theoretically well-founded, general
purpose (independent of the details of the classifier), and computationally tractable. 

One well known approach to unsupervised data analysis is to minimise a recon
struction error: for linear projections and squared euclidean distance this leads to 
principal components analysis, while reference-point based classifiers lead to vector 
quantizer design methods, such as the LBG algorithm, Variants on VQ, such as 
Kohonen's feature maps, can be motivated by requiring robustness to distortions 
in the code space . Reconstruction error is only available as a training criterion if 
reconstruction is defined: in general we are only given class label probabilities. 

2 A Data Likelihood Criterion 

For the special case of a Gaussian clustering of an unlabelled data set, it was demon
strated in [1] that gradient ascent on the likelihood of the data has an appealing 
interpretation in terms of backpropagation in an equivalent unit-Gaussian classifier 
network: for each input X presented to the network, the output y is doubled to 
give 'phantom targets' t = 2y; when the derivatives of the log likelihood criterion 
J = -Eiti 10gYi relative to these targets are propagated back through the network, 
it turns out that the resulting gradient is identical to t.he gradient of the likelihood 
of the data given a Gaussian mixture model. 

For the unit-Gaussian classifier, the activations ai in (1) are 

ai = -Ix - wd 2 , (2) 

so the outputs of the network are 

Yi = P(class = i I x, w) (3) 

where we assume the inputs are drawn from equi-probable unit-Gaussian distribu

tions with the mean of the distribution of the ith class equal to Wi. 

This result was only derived in a limited context, and it was speculated that it might 
be generalisable to arbitrary classification models . The above phantom t.arget. rule 
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has been re-derived for a larger class of networks [4], but the conditions for strict 
applicability are quite severe. Briefly, there should be exponential density functions 
for each class, and the normalizing factors for these densit.ies should be independent 
of the parameters. Thus Gaussians with fixed covariance matrices are acceptable, 
but variable covariances are not, and neither are linear transformat.ions preceeding 
the Gaussians. 

The next section introduces a new objective function which is independent of details 
of the classifier. 

3 Mutual Information Criterion 

Intuitively, an unsupervised adaptive classifier is doing a plausible job if its outputs 
usually give a fairly clear indication of the class of an input vector, and if there is 
also an even dist.ribution of input patterns between the classes. We could label these 
desiderata 'decisive' and 'fair' respectively. Note that it is trivial to achieve either 
of them alone. For a poorly regularised model it may also be trivial to achieve both. 

There are several ways to proceed. We could devise ad-hoc measures corresponding 
to our notions of decisiveness and fairness, or we could consider particular types 
of classifier and their unsupervised equivalents, seeking a general way of turning 
one into the other. Our approach is to return to the general idea that the class 
predictions should retain as much information about the input values as possible. 
We use a measure of the information about x which is conveyed by the output 
distribution, i. e. the mutual information between the inputs and the outputs. 'Ne 
interpret the outputs y as a probability distribution over a discrete random variable 
e (the class label), thus y = p( elx). The mutual information between x and e is 

I(e; x) j r{ p(e,x) 
J dcdxp(e, x) log p(e)p(x) 

J dxp(x) J dep(elx) log p~~~~) 

J J p(clx) 
dxp(x) de p(elx) log J dxp(x)p( elx) 

The elements of this expression are separately recognizable: 

J dx p(x)(.) is equivalent to an average over a training set .~t. Lts (.); 

p( clx) is simply the network output Yc; 

J dc(·) is a sum over the class labels and corresponding network outputs. 

Hence: 

I(c; x) 
I Nc y. 

N L L Yi log :-! 
ts t$ i=l Yi 

(4) 

(5) 

(6) 

(7) 
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Nc 1 Nc 

- L fh log Yh + IV L L Yi log Yi 
i=l 1 is ts i=l 

(8) 

1i(y) -1i(y) (9) 

The objective function I is the difference between the entropy of the average of the 
out.puts, and the average of the entropy of the outputs, where both averages are 
over the training set. 1i(y) has its maximum value when the average activities of 
the separate output.s are equal- this is 'fairness'. 1i(Y) has its minimum value when 
one output is full on and the rest are off for every training case - this is 'firmness'. 

\Ve now evaluate I for the training set. a.nd take the gradient of I. 

4 Gradient descent 

To use this criterion with back-propagation network training, we need its derivatives 
with respect to the network outputs. 

oI(c ;x) 

OYi 
(10) 

(11 ) 

(12) 

The resulting expression is quite simple, but note that the presence of a fii term 
means that two passes through the training set are required: the first to calculate the 
average output node activations, and the second to back-propagate the derivatives. 

5 Illustrations 

Figures 1 shows I (divided by its maximum possible value, log Nc ) for a run of a 
particular unit-Gaussian classifier network. The 30 data points are drawn from a 
2-d isotropic Gaussian. Figure 2 shows the fairness and firmness criteria separately. 
(The upper curve is 'fairness' ?i(y )/log N e , and the lower curve is 'firmness' (1 -
1i(y)/log N c ).) 

The t.en reference points had starting values drawn from the same distribution as the 
data. Figure 3 shows their movement during training. From initial positions within 
the data cluster, they move outwards into a circle around the data. The resulting 
classification regions are shown in Figure 4. (The grey level is proportional to the 
value of the maximum response at each point, and since the outputs are positive 
normalised this value drops to 0.5 or less at the decision boundaries.) We observe 
that the space is being partitioned into regions with roughly equal numbers of 
points. It might be surprising at. first t.hat t.he reference points do not end up near 
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the dat.a. However, it is only the transformat.ion from dat.a x to out.puts y that is 
being trained, and t.he refereme points are just parameters of t.hat t.ra.nsformation. 
As t.he reference point.s move further away from OBe anot.her t.he dE'cision bounclaries 
grow firmer. In t.his example the fairness crit.erion happens t.o decreasf' in favour of 
t.he firmness, and this usually happens. \Ve could consider different weightings of 
the two components of the criterion. 

6 Con1n1ents 

The usefulness of this objective function will prove will depend very much on the 
form of classifier that it is applied t.o. For a poorly regularised classifier, maximisa
tion of the criterion alone will not necessarily lead to good solutions to unsupervised 
classification; it could be ma.ximised by any implausible classification of the input. 
that is completely hard (i. e. the output vector always has one 1 and all the other 
outputs 0), and t.hat. chops the t.raining set int.o regions cont.aining similar numbers 
of training points; such a solution would be one of many global maxima, regardless 
of whether it chopped t.he data into natural classes. 

The meaning of a 'natural' partition in t.his cont.ext is, of course, rather ill-defined. 
Simple models often do not. have t.he capacity t.o break a pattern space int.o highly 
contorted regions - the decision boundaries shown in the figure below is an example 
of model producing a reasonable result as a consequence of its inherent simplicity. 
When we use more complex models, however, we must ensure t.hat we find simpler 
solutions in preference to more complex ones. Thus this criterion encourages us 
to pursue objective t.echniques for regularising classification networks [2, 3]; such 
techniques are probably long overdue. 
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