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ABSTRACT 

Several parallel analogue algorithms, based upon mean field theory (MFT) 
approximations to an underlying statistical mechanics formulation, and re
quiring an externally prescribed annealing schedule, now exist for finding 
approximate solutions to difficult combinatorial optimisation problems. 
They have been applied to the Travelling Salesman Problem (TSP), as 
well as to various issues in computational vision and cluster analysis. I 
show here that any given MFT algorithm can be combined in a natural 
way with notions from the areas of constrained optimisation and adaptive 
simulated annealing to yield a single homogenous and efficient parallel re
laxation technique, for which an externally prescribed annealing schedule 
is no longer required. The results of numerical simulations on 50-city and 
100-city TSP problems are presented, which show that the ensuing algo
rithms are typically an order of magnitude faster than the MFT algorithms 
alone, and which also show, on occasion, superior solutions as well. 

1 INTRODUCTION 

Several promising parallel analogue algorithms, which can be loosely described by 
the term "deterministic annealing" , or "mean field theory (MFT) annealing", have 
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recently been proposed as heuristics for tackling difficult combinatorial optimisation 
problems [1, 2, 3, 4, 5, 6, 7] . However, the annealing schedules must be imposed 
externally in a somewhat ad hoc manner in these procedures (although they can be 
made adaptive to a limited degree [8]). As a result, a number of authors [9, 10, 11] 
have considered the alternative analogue approach of Lagrangian relaxation, a form 
of constrained optimisation due originally to Arrow [12], as a different means of 
tackling these problems. The various alternatives require the introduction of a new 
set of variables, the Lagrange multipliers. Unfortunately, these usually lead in turn 
to either the inclusion of expensive penalty terms, or the consideration of restricted 
classes of problem constraints. The penalty terms also tend to introduce unwanted 
local minima in the objective function, and they must be included even when the 
algorithms are exact [13, 10]. These drawbacks prevent their easy application to 
large-scale combinatorial problems, containing 100 or more variables. 

In this paper I show that the technical features of analogue mean field approxi
mations can be merged with both Lagrangian relaxation methods, and with the 
broad philosophy of adaptive annealing without, importantly, requiring the large 
computational resources that typically accompany the Lagrangian methods. The 
result is a systematic procedure for crafting from any given MFT algorithm a sin
gle parallel homogeneous relaxation technique which needs no externally prescribed 
annealing schedule. In this way the computational power of the analogue heuris
tics is greatly enhanced. In particular, the Lagrangian framework can be used to 
construct an efficient adaptation of the elastic net algorithm [2], which is perhaps 
the most promising of the analogue heuristics. The results of numerical experi
ments are presented which display both increased computational efficiency, and on 
occasion, better solutions (avoidance of some local minima) over deterministic an
nealing. Also, the qualitative mechanism at the root of this behaviour is described. 
Finally, I note that the apparatus can be generalised to a procedure that uses several 
multipliers, in a manner that roughly parallels the notion of different temperatures 
at different physical locations in the simulated annealing heuristic. 

2 DETERMINISTIC ANNEALING 

The deterministic annealing procedures consist of tracking the local minimum of an 
objective function of the form 

(1) 

where x represents the analogue variables used to describe the particular problem at 
hand, and T ~ 0 (initially chosen large) is an adjustable annealing, or temperature, 
parameter. As T is lowered, the objective function undergoes a qualitative change 
from a convex to a distinctly non-convex function. Provided the annealing shedule 
is slow enough, however, it is hoped that the local minimum near T = 0 is a close 
approximation to the global solution of the problem. 

The function S( x) represents an analogue approximation [5, 4, 7] to the entropy of 
an underlying discrete statistical physics system, while F(l;,.) approximates its free 
energy. The underlying discrete system forms the basis of the simulated annealing 
heuristic [14]. Although a general and powerful technique, this heuristic is an inher
ently stochastic procedure which must consider many individual discrete tours at 
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each and every temperature T. The deterministic annealing approximations have 
the advantage of being deterministic, so that an approximate solution at a given 
temperature can be found with much less computational effort. In both cases, 
however, the complexity of the problem under consideration shows up in the need 
to determine with great care an annealing schedule for lowering the temperature 
parameter. 

The primary contribution of this paper consists in pursuing the relationship between 
deterministic annealing and statistical physics one step further, by making explicit 
use of the fact that due to the statistical physics embedding of the deterministic 
annealing procedures, 

(2) 

where Xmin is the local minimum obtained for the parameter value T. This de
ceptively simple observation allows the consideration of the somewhat different ap
proach of Lagrange multiplier methods to automatically determine a dynamics for 
T in the analogue heuristics, using as a constraint the vanishing of the entropy 
function at zero temperature. This particular fact has not been explicitly used in 
any previous optimisation procedures based upon Lagrange multipliers, although it 
is implicit in the work of [9]. Most authors have focussed instead on the syntactic 
constraints contained in the function U(~) when incorporating Lagrange multipli
ers. As a result the issue of eliminating an external annealing schedule has not been 
directly confronted. 

3 LAGRANGE MULTIPLIERS 

Multiplier methods seek the critical points of a "Lagrangian" function 

F(~,;\) = U(x) - ;\S(x) (3) 

where the notation of (1) has been retained, in accordance with the philosophy 
discussed above. The only difference is that the parameter T has been replaced by 
a variable ;\ (the Lagrange multiplier), which is to be treated on the same basis 
as the variables~. By definition, the critical points of F(x,;\) obey the so-called 
Kuhn-Tucker conditions 

\1LF(~,;\) = 0 = 
\1>..F(x,;\) =0= 

\1 rU(~) - ;\ \1 rS(~) - -
-Sex) 

(4) 

Thus, at any critical point of this function, the constraint S(~) = 0 is satisfied. This 
corresponds to a vanishing entropy estimate in (1). Hopefully, in addition, U(~) is 
minimised, subject to the constraint. 

The difficulty with this approach when used in isolation is that finding the critical 
points of F(~,;\) entails, in general, the minimisation of a transformed "uncon
strained" function, whose set of local minima contains the critical points of F as 
a subset. This transformed function is required in order to ensure an algorithm 
which is convergent, because the critical points of F(~,;\) are saddle points, not 
local minima. One well-known way to do this is to add a term S2(~) to (3), giving 
an augmented Lagrangian with the same fixed points as (3), but hopefully with 
better convergence properties. Unfortunately, the transformed function is invari
ably more complicated than F(~, ;\), typically containing extra quadratic penalty 
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terms (as in the above case), which tend to convert harmless saddle points into 
unwanted local minima. It also leads to greater computational overhead, usually 
in the form of either second derivatives of the functions U(L) and S(L) , or of ma
trix inversions [13, 10] (although see [11] for an approach which minimises this 
overhead). For large-scale combinatorial problems such as the TSP these disadvan
tages become prohibitive. In addition, the entropic constraint functions occurring 
in deterministic annealing tend to be quite complicated nonlinear functions of the 
variables involved, often with peculiar behaviour near the constraint condition. In 
these cases (the Hopfield /Tank method is an example) a term quadratic in the en
tropy cannot simply be added to (3) in a straightforward way to produce a suitable 
augmented Lagrangian (of course, such a procedure is possible with several of the 
terms in the internal energy U (.~». 

4 COMBINING BOTH METHODS 

The best features of each of the two approaches outlined above may be retained by 
using the following modification of the original first-order Arrow technique: 

Xi = -"Vr,F(x,>.) = -"Vr,U(x) + >'''Vx,S(x) 

>. =+"V>.F(x,>.) =-S(x)+c/>' 

where F(x, >.) is a slightly modified "free energy" function given by 

F(x, >.) = U(x) - >'S(x) + c In >. 

(5) 

(6) 

In these expressions, c > 0 is a constant, chosen small on the scale of the other pa
rameters, and characterises the sole, inexpensive, penalty requirement. It is needed 
purely in order to ensure that>. remain positive. In fact, in the numerical experi
ment that I will present, this penalty term for>. was not even used - the algorithm 
was simply terminated at a suitably small value of >.. 

The reason for insisting upon>. > 0, in contrast to most first-order relaxation meth
ods, is that it ensures that the free energy objective function is bounded below with 
respect to the X variables. This in turn allows (5) to be proven locally convergent 
[15] using techniques discussed in [13]. Furthermore, the methods described by (5) 
are found empirically to be globally convergent as well. This feature is in fact the 
key to their computational efficiency, as it means that they need not be grafted 
onto more sophisticated and inefficient methods in order to ensure convergence. 
This behaviour can be traced to the fact that the ''free energy" functions, while 
non-convex overall with respect to L, are nevertheless convex over large volumes of 
the solution space. The point can be illustrated by the construction of an energy 
function similar to that used by Platt and Barr [9], which also displays the mecha
nism by which some of the unwanted local minima in deterministic annealing may 
be avoided. These issues are discussed further in Section 6. 

The algorithms described above have several features which distinguish them from 
previous work. Firstly, the entropy estimate Sex) has been chosen explicitly as 
the appropriate constraint function, a fact which has previously been unexploited 
in the optimisation context (although a related piecewise linear function has been 
used by [9]). Further, since this estimate is usually positive for the mean field theory 
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heuristics, A (the only new variable) decreases monotonically in a manner roughly 
similar to the temperature decrease schedule used in simulated and deterministic 
annealing, but with the ad hoc drawback now removed. Moreover, there is no 
requirement that the system be at or near a fixed point each time A is altered -
there is simply one homogeneous dynamical system which must approach a fixed 
point only once at the very end of the simulation, and furthermore A appears linearly 
except near the end of the procedure (a major reason for its efficiency). Finally, 
the algorithms do not require computationally cumbersome extra structure in the 
form of quadratic penalty terms, second derivatives or inverses, in contrast to the 
usual Lagrangian relaxation techniques. All of these features can be seen to be due 
to the statistical physics setting of the annealing "Lagrangian", and the use of an 
entropic constraint instead of the more usual syntactic constraints. 

The apparatus outlined above can immediately be used to adapt the Hopfield/Tank 
heuristic for the Travelling Salesman Problem (TSP) [1], which can easily be written 
in the form (1). However, the elastic net method [2] is known to be a somewhat 
superior method, and is therefore a better candidate for modification. There is 
an impediment to the procedure here: the objective function for the elastic net is 
actually of the form 

F(z., A) = U(x) - AS(X, A) (7) 

which precludes the use of a true Lagrange muliplier, since A now appears non
trivially in the constraint function itself! However, I find surprisingly that the 
algorithm obtained by applying the Lagrangian relaxation apparatus in a straight
forward way as before still leads to a coherent algorithm. The equations are 

Xi = -V'1',F(x,A) = -V'1',U(z.) + AV'1',S(X) (8) 

A = +(V'>.F(z.,A) = -([S(.~,A) + AV'>.S(X,A)] 

The parameter ( > 0 is chosen so that an explicit barrier term for A can be avoided. 
It is the only remaining externally prescribed part of the former annealing schedule, 
and is fixed just once at the begining of the algorithm. 

It can be shown that the global convergence of (8) is highly plausible in general (and 
seems to always occur in practice), as in the simpler case described by (5). Secondly, 
and most importantly, it can be shown that the constraints that are obeyed at 
the new fixed points satisfy the syntax of the original discrete problem [15]. The 
procedure is not limited to the elastic net method for the TSP. The mean field 
approximations discussed in [3, 4, 5] all behave in a similar way, and can therefore 
be adapted successfully to Lagrangian relaxation methods. The form of the elastic 
net entropy function suggests a further natural generalisation of the procedure. 
A different "multiplier" Aa can be assigned to each city a, each variable being 
responsible for satisfying a different additive component of the entropy constraint. 
The idea has an obvious parallel to the notion in simulated annealing of lowering 
the temperature in different geographical regions at different rates in response to 
the behaviour of the system. The number of extra variables required is a modest 
computational investment, since there are typically many more tour points than 
city points for a given implementation. 
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5 RESULTS FOR THE TSP 

Numerical simulations were performed on various TSP instances using the elastic 
net method, the Lagrangian adaptation with a single global Lagrange multiplier, 
and the modification discussed above involving one Lagrange multiplier for each city. 
The results are shown in Table 1. The tours for the Lagrangian relaxation methods 
are about 0.5% shorter than those for the elastic net, although these differences 
are not yet at a statistically significant level. The differences in the computational 
requirements are, however, much more dramatic. No attempt has been made to 
optimise any of the techniques by using sophisticated descent procedures, although 
the size of the update step has been chosen to seperately optimise each method. 

Table 1: Performance of heuristics described in the text on a set of 40 randomly 
distibuted 50-city instances of the TSP in the unit square. CPU times quoted are 
for a SUN SPARC Station 1+. Q' and j3 are the standard tuning parameters [4]. 

METHOD 

Elastic net 
Global multiplier 
Local multipliers 

Q' j3 

0.2 2.5 
0.4 2.5 
0.4 2.5 

TOUR LENGTH 

5.95 ± 0.10 
5.92 ± 0.09 
5.92 ± 0.08 

CPU(SEC) 

260 ± 33 
49 ± 5 

82 ± 12 

I have also been able to obtain a superior solution to the 100-city problem analysed 
by Durbin and Willshaw [2], namely a solution of length 7.746 [15] (c.f. length 
7.783 for the elastic net) in a fraction of the time taken by elastic net annealing. 
This represents an improvement of roughly 0.5%. Although still about 0.5% longer 
than the best tour found by simulated annealing, this result is quite encouraging, 
because it was obtained with far less CPU time than simulated annealing, and in 
substantially less time than the elastic net: improvements upon solutions within 
about 1% of optimality typically require a substantial increase in CPU investment. 

6 HOW IT WORKS - VALLEY ASCENT 

Inspection of the solutions obtained by the various methods indicates that the mul
tiplier schemes can sometimes exchange enough "inertial" energy to overcome the 
energy barriers which trap the annealing methods, thus offering better solutions as 
well as much-improved computational efficiency. This point is illustrated in Figure 
l(a), which displays the evolution of the following function during the algorithm for 
a typical set of parameters: 

1 ~ . 2 1. 2 
E = "2 ~ Xi + 2"\ 

I 

(9) 

The two terms can be thought of as different components of an overall kinetic energy 
E. During the procedure, energy can be exchanged between these two components, 
so the function E(t) does not decrease monotonically with time. This allows the 
system to occasionally escape from local minima. Nevertheless, after a long enough 
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Figure I: (a) Evolution of variables for a typical 50-city TSP. The solid curve shows 
the total kinetic energy E given by (9). The dotted curve shows the A component 
of this energy, and the dash-dotted curve shows the x component. (b) Trajectories 
taken by various algorithms on a schematic free energy surface. The two dash
dotted curves show possible paths for elastic net annealing, each ascending a valley 
floor. The dotted curve shows a Lagrangian relaxation, which displays oscillations 
about the valley floor leading to the superior solution. 

time the function does decrease smoothly, ensuring convergence to a valid solution 
to the problem. 

The basic mechanism can also be understood by plotting schematically the free 
energy "surface" F(ll, A), as shown in Figure l(b) . This surface has a single valley 
in the foreground, where A is large. Bifurcations occur as A becomes smaller, with 
a series of saddles, each a valid problem solution, being reached in the background 
at A = O. Deterministic annealing can be viewed as the ascent of just one of these 
valleys along the valley floor. It is hoped that the broadest and deepest minimum 
is chosen at each valley bifurcation, leading eventually to the lowest background 
saddle point as the optimal solution. A typical trajectory for one of the Lagrangian 
modifications also consists roughly of the ascent of one of these valleys. However, 
oscillations about the valley floor now occur on the way to the final saddle point, 
due to the interplay between the different kinetic components displayed in Figure 
lea). It is hoped that the extra degrees of freedom allow valleys to be explored more 
fully near bifurcation points, thus biasing the larger valleys more than deterministic 
annealing. Notice that in order to generate the A dynamics, computational signifi
cance is now assigned to the actual value of the free energy in the new schemes, in 
contrast to the situation in regular annealing. 

7 CONCLUSION 

In summary, a simple yet effective framework has been developed for systematically 
generalising any algorithm described by a mean field theory approximation proce
dure to a Lagrangian method which replaces annealing by the relaxation of a single 
dynamical system. Even in the case of the elastic net, which has a slightly awkward 
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form, the resulting method can be shown to be sensible, and I find in fact that it 
substantially improves the speed (and accuracy) of that method. The adaptations 
depend crucially upon the vanishing of the analogue entropy at zero temperature. 
This allows the entropy to be used as a powerful constraint function, even though 
it is a highly nonlinear function and might be expected at first sight to be unsuit
able for the task. In fact, this observation can also be applied in a wider context 
to design objective functions and architectures for neural networks which seek to 
improve generalisation ability by limiting the number of network parameters [16]. 
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