
Operators and curried functions: 
Training and analysis of simple recurrent networks 

Janet Wiles 
Depts of Psychology and Computer Science, 
University of Queensland 
QLD 4072 Australia. 
janetw@CS.uq.oz.au 

Abstract 

Anthony Bloesch, 
Dept of Computer Science, 

University of Queensland, 
QLD 4072 Australia 
anthonyb@cs.uq.oz.au 

We present a framework for programming tbe bidden unit representations of 
simple recurrent networks based on the use of hint units (additional targets at 
the output layer). We present two ways of analysing a network trained within 
this framework: Input patterns act as operators on the information encoded by 
the context units; symmetrically, patterns of activation over tbe context units 
act as curried functions of the input sequences. Simulations demonstrate that a 
network can learn to represent three different functions simultaneously and 
canonical discriminant analysis is used to investigate bow operators and curried 
functions are represented in the space of bidden unit activations. 

1 INTRODUCTION 

Many recent papers have contributed to the understanding of recurrent networks and their 
potential for modelling sequential pbenomena (see for example Giles, Sun, Chen, Lee, & 
Chen, 1990; Elman, 1989; 1990; Jordan, 1986; Cleeremans, Servan-Schreiber & 
McClelland, 1989; Williams & Zipser, 1988). Of particular interest in these papers is 
the development of recurrent architectures and learning algorithms able to solve complex 
problems. The perspective of the work we present bere has many similarities with these 
stUdies, however, we focus on programming a recurrent network for a specific task, and 
hence provide appropriate sequences of inputs to learn the temporal component. 

The function computed by a neural network is conventionally represented by its weights. 
During training, the task of a network is to learn a set of weights that causes tbe 
appropriate action (or set of context-specific actions) for each input pattern. However, in 

325 



326 Wiles and Bloesch 

a network with recurrent connections, patterns of activation are also part of the function 
computed by a network. After training (when the weights have been fixed) each input 
pattern has a specific effect on the pattern of activation across the hidden and output units 
which is modulated by the current state of those units. That is, each input pattern is a 
context sensitive operator on the state of the system. 

To illustrate this idea, we present a task in which many sequences of the form, {F, argl, 
... , argn} are input to a network, which is required to output the value of each function, 
F(argl, ... , argn). The task is interesting since it illustrates how more than one function 
can be computed by the same network and how the function selected can be specified by 
the inputs. Viewing all the inputs (both function patterns, F, and argument patterns, 
argi) as operators allows us to analyse the effect of each input on the state of the network 
(the pattern of activation in the hidden and context units). From this perspective, the 
weights in the network can be viewed as an interpreter which has been programmed to 
carry out the operations specified by each input pattern. 

We use the term programming intentionally, to convey the idea that the actions of each 
input pattern playa specific role in the processing of a sequence. In the simulations 
described in this paper, we use the simple recurrent network (SRN) proposed by Elman 
(1990). The art of programming enters the simulations in the use of extra target units, 
called hints, that are provided at the output layer. At each step in learning a sequence, 
hints specify all the information that the network must preserve in the hidden unit 
representation (the state of the system) in order to calculate outputs later in the sequence 
(for a discussion of the use of hints in training a recurrent network see Rumelhart, 
Hinton & Williams, 1986). 

2 SIMULATIONS 

Three different boolean functions and their arguments were specified as sub-sequences of 
patterns over the inputs to an SRN. The network was required to apply the function 
specified by the first pattern in each sequence to each of the subsequent arguments in 
turn. The functions provided were boolean functions of the current input and previous 
output, AND, OR and XOR (Le., exclusive-or) and the arguments were arbitrary length 
strings of O's and 1 'so The context units were not reset between sub-sequences. An SRN 
with 3 input, 5 hidden, 5 context, 1 output and 5 hint units was trained using 
backpropagation with a momentum term. The 5 hint units at the output layer provided 
information about the boolean functions during training (via the backpropagation of 
errors), but not during testing. The network was trained on three data sets each 
containing 700 (ten times the number of weights in the network) randomly generated 
patterns, forming function and arguments sequences of average length 0.5, 2 and 4 
arguments respectively. The network was trained for one thousand iterations on each 
training set. 

2.1 RESULTS AND GENERALISATION 

After training, the network correctly computed every pattern in the three training sets 
(using a closest match criterion for scoring the output) and also in a test set of sequences 
generated using the same statistics. Generalisation test data consisting of all possible 
sequences composed of each function and eight arguments, and long sequences each of 50 
arguments also produced the correct output for every pattern in every sequence. To test 



Operators and curried functions: Training and analysis of simple recurrent networks 327 

-c:: u 

ffiQ c:: 
8. flJa 8 ~AI 0 rr Co) r-:-

~. 

- ,. 
~ jj Co) 

'8 

~. 
0 ,. 
§ • 

~ Co) 

"0 • 
.!:l L -!. 
~ 

First canonical component First canonical component 

la. lb. 
Figure la. The hidden unit patterns for the training data, projected onto the first two 
canonical components. These components separate the patterns into 3 distinct regions 
corresponding to the initial pattern (AND, OR or XOR) in each sequence. lb. The first 
and third canonical components further separate the hidden unit patterns into 6 regions 
which have been marked in the diagrams above by the corresponding output classes AI, 
AO, Rl, RO, Xl and XO. These regions are effectively the computational states of the 
network. 

1~G O'U 

Figure 2. Finite state machine to compute the three-function task. 

Another way of considering sub-sequences in the input stream is to describe all the 
inputs as functions, not over the other inputs, as above, but as functions of the state (for 
which we use the term operators). Using this terminology, a sub-sequence is a 
composition of operators which act on the current state, 

G(S(t) = argt ° ... ° arg2 ° argJo S(O), 

where (f ° g) (x) = f(g(x)), and S(O) is the initial state of the network. A consequence of 

describing the input patterns as operators is that even the 0 and 1 data bits can be seen as 
operators that transform the internal state (see Box 1). 



328 Wiles and Bloesch 

3a. 
First canonical component 

First canonical component 

First canonical component 

[]. ru-

.. 

First canonical component 
3d. 

.. 

First canonical component 
3e. 

• 

• 

Figure 3. State transitions caused by each input pattern, projected onto the ftrst and third 
canonical components of the hidden unit patterns (generated by the training data as in 
Figure 1). 3a-c. Transitions caused by the AND, OR and XOR input patterns 
respectively. From every point in the hidden unit space, the input patterns for AND, OR 
and XOR transform the hidden units to values corresponding to a point in the regions 
marked AI, RO and XO respectively. 3d-e. Transitions caused by the 0 and I input 
patterns respectively. The 0 and I inputs are context sensitive operators. The 0 input 
causes changes in the hidden unit patterns corresponding to transitions from the state Al 
to AO, but does not cause transitions from the other 5 regions. Conversely. a I input 
does not cause the hidden unit patterns to change from the regions AI, AO or RI, but 
causes transitions from the regions RO, Xl and XO. 



Operators and curried functions: Training and analysis of simple recurrent networks 329 

Input 
operators 

AND 
OR 

XOR 
1 

o 

Patterns on 
the input units 

011 
110 
101 
111 

000 

Effect on information 
encoded in the state 

cf-'AND 
cf-. OR 
cf-'XOR 
x(t) -. x(t-1) 

1 
NOT(x(t-1» 

x(t) -. 0 
x(t-1) 
x(t-1) 

if cf= AND 
if cf= OR 
if cf= XOR 
if cf= AND 
if cf= OR 
if cf= XOR 

Box 1. Operators for the 5 input patterns. The operation performed by each input 
pattern is described in terms of the effect it has on information encoded by the hidden 
unit patterns. The first and second columns specify the input operators and their 
corresponding input patterns. The third column specifies the effect that each input in a 
sub-sequence has on information encoded in the state, represented as cf, for current 
function, and x(t) for the last output. 

For each input pattern, we plotted all the transitions in hidden unit space resulting from 
that input projected onto the canonical components used in Figure 1. Figures 3a to 3e 
show transitions for each of the five input operators. For the three "function" inputs, 
OR, AND, and XOR, the effect is to collapse the hidden unit patterns to a single region 
- a particular state. These are relatively context insensitive operations. For the two 
"argument" inputs, 0 and 1, the effect is sensitive to the context in which the input 
occurs (i.e., the previous state of the hidden units). A similar analysis of the states 
themselves focuses on the hidden unit patterns and the information that they must encode 
in order to compute the three-function task. At each timestep the weights in the network 
construct a pattern of activation over the hidden units that reduces the structured 
arguments of a complex function of several arguments by a simpler function of one less 
argument. This can be represented as follows: 

G(F, arg1, ... argn) -. F(arg1, ... argn) 
-. Fargl(arg2, ... argn) 
-. Fargl arg2(arg3, ... argn). 

This process of replacing structured arguments by a corresponding sequence of simple 
ones is known as currying the input sequence (for a review of curried functions, see Bird 
and Wadler, 1988). Using this terminology, the pattern of activation in the hidden units 
is a curried function of the entire input sequence up to that time step. The network 
combines the previous hidden unit patterns (preserved in the context units) with the 
current input patterns to compute the next curried function in the sequence. Since there 
are 6 states required by the network, there are 6 classes of equivalent curried functions. 
Figure 4 shows the transition diagrams for each of the 6 equivalence classes of curried 
functions from the same simulation shown in Figures 1 and 3. 



330 Wiles and Bloesch 

First canonical component 
4a. 

First canonical component 

4b. 

First canonical component 

4c. 

• 

First canonical component 
4d. 

First canonical component 

4e. 

First canonical component 

4f. 

• 

Figure 4. State transitions for each hidden unit pattern, grouped into classes of curried 
functions, projected onto the frrst and third canonical components. 4a-f. Transitions from 
AI, RI, Xl, AO, RO and XO respectively. Each pattern of activation corresponds to a 
curried function of the input sequence up to that item in the sequence. 



Operators and curried fUnctions: Training and analysis of simple recurrent networks 331 

how often the network finds a good solution, five simulations were completed with the 
above parameters, all started with different sets of random weights, and randomly 
generated training patterns. Three simulations learnt the training set perfectly (the other 
two simulations appeared to be converging, but slowly: worst case error less than 1%). 
On the test data, the results were also good (worst case 7% error). 

2.2 ANALYSIS 

The hidden unit patterns generated by the training data in the simulations described above 
were analysed using canonical discriminant analysis (CDA, Kotz & Johnson, 1982). Six 
output classes were specified, corresponding to one class for each output for each 
function. The output classes were used to compute the first three canonical components 
of the hidden unit patterns (which are 5-dimensional patterns corresponding to the 5 
hidden units). The graph of the first two canonical components (see Figure 1a) shows 
the hidden unit patterns separated into three tight clusters, corresponding to the sequence 
type (OR, AND and XOR). The first and third canonical components (see Figure 1b) 
reveals more of the structure within each class. The six classes of hidden unit patterns 
are spread across six distinct regions (these correspond to the 6 states of the minimal 
finite state machine, as shown in Figure 2). The first canonical component separates the 
hidden unit patterns into sequence type (OR, AND, or XOR, separated across the page). 
Within each region, the third canonical component separates the outputs into O's and l's 
(separated down the page). Cluster analysis followed by CDA on the clusters gave 
similar results. 

3 DISCUSSION 

In a network that is dedicated to computing a boolean function such as XOR, it seems 
obvious that the information for computing the function is in the weights. The 
simulations described in this paper show that this intuition does not necessarily 
generalise to other networks. The three-function task requires that the network use the 
first input in a sequence to select a function which is then applied to subsequent 
arguments. In general, for any given network, the function that is computed over a given 
sulrsequence will be specified by the interaction between the weights and the activation 
pattern. 

The function computed by the networks in these simulations can be described in terms of 
the output of the global function, O(t) = G(argl, ... , argt), computed by the weights of 
the network, which is a function of the whole input sequence. An equivalent description 
can be given in terms of sulrsequences of the input stream, which specify a boolean 
function over subsequent arguments, G(F, argl, ... , argt) = F(argJ, ... , argt). Both these 
levels of description follow the traditional approach of separating functions and data, 
where the patterns of activity can be described as either one or the other. 



332 Wiles and Bloesch 

It appears to us that descriptions based on operators and curried functions provide a 
promising approach for the integration of representation and process within recurrent 
networks. For example, in the simulations described by Elman (1990), words can be 
understood as denoting operators which act on the state of the recurrent network, rather 
than denoting objects as they do in traditional linguistic theory. The idea of currying can 
also be applied to feedback from the output layer, for example in the networks developed 
by Jordan (1986), or to the product units used by Giles et al. (1990). 

Acknowledgements 

We thank Jeff Elman, Ian Hayes, Julie Stewart and Bill Wilson for many discussions on 
these ideas, and Simon Dennis and Steven Phillips for developing the canonical 
discriminant program. This work was supported by grants from the Australian Research 
Council and A. Bloesch was supported by an Australian Postgraduate Research Award. 

References 

Bird, R., and Wadler P. (1988). Introduction to Functional Programming, Prentice Hall, 
NY. 

Cleeremans, A., Servan-Schreiber, D., and McClelland, J.L. (1989). Finite state 
automata and simple recurrent networks, Neural Computation, 1,372-381. 

Elman, J. (1989). Representation and structure in connectionist models. UCSD CRL 
Technical Report 8903, August 1989. 

Elman, J. (1990). Finding structure in time. Cognitive Science, 14, 179-211. 

Giles, C. L., Sun, G. Z., Chen, H. H., Lee, Y. C., and Chen, D. (1990). Higher Order 
Recurrent Networks. In D.S. Touretzky (ed.) Advances in Neural Information Processing 
Systems 2, Morgan-Kaufmann, San Mateo, Ca., 380-387. 

Jordan, M. I. (1986). Serial order: A parallel distributed processing approach. Institute 
for Cognitive Science, Technical Report 8604. UCSD. 

Kotz, S., and Johnson, N.L. (1982). Encyclopedia of Statistical Sciences. John Wiley 
and Sons, NY. 

Rumelhart, D.E., Hinton, G.E., and Williams, R.J. (1986). Learning internal 
representations by error propagation. In D.E. Rumelhart & J.L. McClelland (eds.), 
Parallel distributed processing: Explorations in the microstructure of cognition (Vol. 1, 
pp.318-362). Cambridge, MA: MIT Press. 

Williams, R. J., and Zipser, D. (1988). A Learning Algorithm for Continually Running 
Fully Recurrent Neural Networks, Institute for Cognitive SCience, Technical Report 
8805. UCSD. 


