
Iterative Construction of
Sparse Polynomial Approximations

Terence D. Sanger
Massachusetts Institute

of Technology
Room E25-534

Cambridge, MA 02139
tds@ai.mit.edu

Richard S. Sutton
GTE Laboratories

Incorporated
40 Sylvan Road

Waltham, MA 02254
sutton@gte.com

Christopher J. Matheus
GTE Laboratories

Incorporated
40 Sylvan Road

Waltham, MA 02254
matheus@gte.com

Abstract

We present an iterative algorithm for nonlinear regression based on con­
struction of sparse polynomials. Polynomials are built sequentially from
lower to higher order. Selection of new terms is accomplished using a novel
look-ahead approach that predicts whether a variable contributes to the
remaining error. The algorithm is based on the tree-growing heuristic in
LMS Trees which we have extended to approximation of arbitrary poly­
nomials of the input features. In addition, we provide a new theoretical
justification for this heuristic approach. The algorithm is shown to dis­
cover a known polynomial from samples, and to make accurate estimates
of pixel values in an image-processing task.

1 INTRODUCTION

Linear regression attempts to approximate a target function by a model that is a
linear combination of the input features. Its approximation ability is thus limited
by the available features. We describe a method for adding new features that are
products or powers of existing features. Repeated addition of new features leads
to the construction of a polynomial in the original inputs, as in (Gabor 1961).
Because there is an infinite number of possible product terms, we have developed
a new method for predicting the usefulness of entire classes of features before they
are included. The resulting nonlinear regression will be useful for approximating
functions that can be described by sparse polynomials.

1064

Iterative Construction of Sparse Polynomial Approximations 1065

f

Xn

Figure 1: Network depiction of linear regression on a set of features Xi.

2 THEORY

Let {xdi=l be the set of features already included in a model that attempts to
predict the function f . The output of the model is a linear combination

n

i = LCiXi
i=l

where the Ci'S are coefficients determined using linear regression. The model can
also be depicted as a single-layer network as in figure 1. The approximation error
is e = f - j, and we will attempt to minimize E[e2] where E is the expectation
operator.

The algorithm incrementally creates new features that are products of existing
features. At each step, the goal is to select two features xp and Xq already in the
model and create a new feature XpXq (see figure 2). Even if XpXq does not decrease
the approximation error, it is still possible that XpXqXr will decrease it for some
X r . So in order to decide whether to create a new feature that is a product with
x p , the algorithm must "look-ahead" to determine if there exists any polynomial a
in the xi's such that inclusion ofaxp would significantly decrease the error. If no
such polynomial exists, then we do not need to consider adding any features that
are products with xp.

Define the inner product between two polynomials a and b as (alb) = E[ab] where
the expected value is taken with respect to a probability measure I-" over the (zero­
mean) input values. The induced norm is IIal12 = E[a2], and let P be the set of
polynomials with finite norm. {P, (·I·)} is then an infinite-dimensional linear vector
space. The Weierstrass approximation theorem proves that P is dense in the set of
all square-integrable functions over 1-", and thus justifies the assumption that any
function of interest can be approximated by a member of P.

Assume that the error e is a polynomial in P. In order to test whether axp partic­
ipates in e for any polynomial a E P, we write

e = apxp + bp

1066 Sanger, Sutton, and Matheus

f

Figure 2: Incorporation of a new product term into the model.

where ap and bp are polynomials, and ap is chosen to minimize lIapxp - ell 2

E[(apxp - e)2]. The orthogonality principle then shows that apxp is the projection
of the polynomial e onto the linear subspace of polynomials xpP. Therefore, bp is
orthogonal to xpP, so that E[bpg] = 0 for all g in xpP.

We now write

E[e2] = E[a;x;] + 2E[apxpbp] + E[b;] = E[a;x;] + E[b;]

since E[apxpbp] = 0 by orthogonality. If apxp were included in the model, it would
thus reduce E[e2] by E[a;x;], so we wish to choose xp to maximize E[a;x;]. Un­
fortunately, we have no dIrect measurement of ap •

3 METHODS

Although E[a;x;] cannot be measured directly, Sanger (1991) suggests choosing xp
to maximize E[e2x~] instead, which is directly measurable. Moreover, note that

E[e2x;] = E[a;x;] + 2E[apx;bp] + E[x;b;]

= E[a;x;]

and thus E[e2x;] is related to the desired but unknown value E[a;x;]. Perhaps
better would be to use

E[e2x2] E[a2x4]
~=-::-:p- - p p
E[x~] - E[x~]

which can be thought of as the regression of (a;x~)xp against xp'

More recently, (Sutton and Matheus 1991) suggest using the regression coefficients
of e2 against xr for all i as the basis for comparison. The regression coefficients Wi

are called "potentials", and lead to a linear approximation of the squared error:

(1)

Iterative Construction of Sparse Polynomial Approximations 1067

If a new term apxp were included in the model of f, then the squared error would
be b; which is orthogonal to any polynomial in xpP and in particular to x;. Thus
the coefficient of x; in (1) would be zero after inclusion of apxp, and wpE[x;] is an
approximation to the decrease in mean-squared error E[e 2] - E[b;] which we can
expect from inclusion of apxp. We thus choose xp by maximizing wpE[x;].

This procedure is a form of look-ahead which allows us to predict the utility of a
high-order term apxp without actually including it in the regression. This is perhaps
most useful when the term is predicted to make only a small contribution for the
optimal ap , because in this case we can drop from consideration any new features
that include xp.

We can choose a different variable Xq similarly, and test the usefulness of incorporat­
ing the product XpXq by computing a "joint potential" Wpq which is the regression of
the squared error against the model including a new term x~x~. The joint potential
attempts to predict the magnitude of the term E[a~qx;xi].

We now use this method to choose a single new feature XpXq to include in the model.
For all pairs XiXj such that Xi and Xj individually have high potentials, we perform
a third regression to determine the joint potentials of the product terms XiXj. Any
term with a high joint potential is likely to participate in f. We choose to include the
new term XpXq with the largest joint potential. In the network model, this results in
the construction of a new unit that computes the product of xp and x q, as in figure
2. The new unit is incorporated into the regression, and the resulting error e will
be orthogonal to this unit and all previous units. Iteration of this technique leads
to the successive addition of new regression terms and the successive decrease in
mean-squared error E[e 2]. The process stops when the residual mean-squared error
drops below a chosen threshold, and the final model consists of a sparse polynomial
in the original inputs.

We have implemented this algorithm both in a non-iterative version that computes
coefficients and potentials based on a fixed data set, and in an iterative version that
uses the LMS algorithm (Widrow and Hoff 1960) to compute both coefficients and
potentials incrementally in response to continually arriving data. In the iterative
version, new terms are added at fixed intervals and are chosen by maximizing over
the potentials approximated by the LMS algorithm. The growing polynomial is
efficiently represented as a tree-structure, as in (Sanger 1991a).

Although the algorithm involves three separate regressions, each is over only O(n)
terms, and thus the iterative version of the algorithm is only of O(n) complexity
per input pattern processed.

4 RELATION TO OTHER ALGORITHMS

Approximation of functions over a fixed monomial basis is not a new technique
(Gabor 1961, for example) . However, it performs very poorly for high-dimensional
input spaces, since the set of all monomials (even of very low order) can be pro­
hibitively large. This has led to a search for methods which allow the generation of
sparse polynomials. A recent example and bibliography are provided in (Grigoriev
et al. 1990), which describes an algorithm applicable to finite fields (but not to

1068 Sanger, Sutton, and Matheus

j

Figure 3: Products of hidden units in a sigmoidal feedforward network lead to a
polynomial in the hidden units themselves.

real-valued random variables).

The GMDH algorithm (Ivakhnenko 1971, Ikeda et al. 1976, Barron et al. 1984)
incrementally adds new terms to a polynomial by forming a second (or higher)
order polynomial in 2 (or more) of the current terms, and including this polynomial
as a new term if it correlates with the error. Since GMDH does not use look-ahead,
it risks avoiding terms which would be useful at future steps. For example, if the
polynomial to be approximated is xyz where all three variables are independent,
then no polynomial in x and y alone will correlate with the error, and thus the
term xy may never be included. However, x 2y2 does correlate with x 2y2 Z2, so
the look-ahead algorithm presented here would include this term, even though the
error did not decrease until a later step. Although GMDH can be extended to
test polynomials of more than 2 variables, it will always be testing a finite-order
polynomial in a finite number of variables, so there will always exist target functions
which it will not be able to approximate.

Although look-ahead avoids this problem, it is not always useful. For practical
purposes, we may be interested in the best Nth-order approximation to a function,
so it may not be helpful to include terms which participate in monomials of order
greater than N, even if these monomials would cause a large decrease in error.
For example, the best 2nd-order approximation to x 2 + ylOOO + zlOOO may be x 2 ,

even though the other two terms contribute more to the error. In practice, some
combination of both infinite look-ahead and GMDH-type heuristics may be useful.

5 APPLICATION TO OTHER STRUCTURES

These methods have a natural application to other network structures. The inputs
to the polynomial network can be sinusoids (leading to high-dimensional Fourier
representations), Gaussians (leading to high-dimensional Radial Basis Functions)
or other appropriate functions (Sanger 1991a, Sanger 1991b). Polynomials can

I terative Construction of Sparse Polynomial Approximations 1069

even be applied with sigmoidal networks as input, so that

Xi = (T (I: SijZj)

where the z;'s are the original inputs, and the Si;'S are the weights to a sigmoidal
hidden unit whose value is the polynomial term Xi. The last layer of hidden units
in a multilayer network is considered to be the set of input features Xi to a linear
output unit, and we can compute the potentials of these features to determine the
hidden unit xp that would most decrease the error if apxp were included in the
model (for the optimal polynomial ap). But ap can now be approximated using a
subnetwork of any desired type. This subnetwork is used to add a new hidden unit
C&pxp that is the product of xp with the subnetwork output C&p, as in figure 3.

In order to train the C&p subnetwork iteratively using gradient descent, we need to
compute the effect of changes in C&p on the network error £ = E[(f - j)2]. We have

where S 4pXp is the weight from the new hidden unit to the outpu t. Without loss of
generality we can set S4pXp = 1 by including this factor within C&p. Thus the error
term for iteratively training the subnetwork ap is

which can be used to drive a standard backpropagation-type gradient descent al­
gorithm. This gives a method for constructing new hidden nodes and a learning
algorithm for training these nodes. The same technique can be applied to deeper
layers in a multilayer network.

6 EXAMPLES

We have applied the algorithm to approximation of known polynomials in the pres­
ence of irrelevant noise variables, and to a simple image-processing task.

Figure 4 shows the results of applying the algorithm to 200 samples of the polyno­
mial 2 + 3XIX2 + 4X3X4X5 with 4 irrelevant noise variables. The algorithm correctly
finds the true polynomial in 4 steps, requiring about 5 minutes on a Symbolics Lisp
Machine. Note that although the error did not decrease after cycle 1, the term X4X5

was incorporated since it would be useful in a later step to reduce the error as part
of X3X4X5 in cycle 2.

The image processing task is to predict a pixel value on the succeeding scan line
from a 2x5 block of pixels on the preceding 2 scan lines. If successful, the resulting
polynomial can be used as part of a DPCM image coding strategy. The network
was trained on random blocks from a single face image, and tested on a different
image. Figure 5 shows the original training and test images, the pixel predictions,
and remaining error . Figure 6 shows the resulting 55-term polynomial. Learning
this polynomial required less than 10 minutes on a Sun Sparcstation 1.

