Iterative Construction of
Sparse Polynomial Approximations

Terence D. Sanger Richard S. Sutton Christopher J. Matheus

Massachusetts Institute GTE Laboratories GTE Laboratories
of Technology Incorporated Incorporated
Room E25-534 40 Sylvan Road 40 Sylvan Road

Cambridge, MA 02139 Waltham, MA 02254 Waltham, MA 02254
tds@ai.mit.edu sutton@gte.com matheusQgte.com

Abstract

We present an iterative algorithm for nonlinear regression based on con-
struction of sparse polynomials. Polynomials are built sequentially from
lower to higher order. Selection of new terms is accomplished using a novel
look-ahead approach that predicts whether a variable contributes to the
remaining error. The algorithm is based on the tree-growing heuristic in
LMS Trees which we have extended to approximation of arbitrary poly-
nomials of the input features. In addition, we provide a new theoretical
Jjustification for this heuristic approach. The algorithm is shown to dis-
cover a known polynomial from samples, and to make accurate estimates
of pixel values in an image-processing task.

1 INTRODUCTION

Linear regression attempts to approximate a target function by a model that is a
linear combination of the input features. Its approximation ability is thus limited
by the available features. We describe a method for adding new features that are
products or powers of existing features. Repeated addition of new features leads
to the construction of a polynomial in the original inputs, as in (Gabor 1961).
Because there is an infinite number of possible product terms, we have developed
a new method for predicting the usefulness of entire classes of features before they
are included. The resulting nonlinear regression will be useful for approximating
functions that can be described by sparse polynomials.

1064

Iterative Construction of Sparse Polynomial Approximations

T T2 Tn

Figure 1: Network depiction of linear regression on a set of features z;.

2 THEORY

Let {z;}, be the set of features already included in a model that attempts to
predict the function f. The output of the model is a linear combination

f= i:cm!i

i=1

where the ¢;’s are coefficients determined using linear regression. The model can
also be depicted as a single-layer network as in figure 1. The approximation error
is e = f— f, and we will attempt to minimize E[e?] where E is the expectation
operator.

The algorithm incrementally creates new features that are products of existing
features. At each step, the goal is to select two features z, and z, already in the
model and create a new feature z,z, (see figure 2). Even if z,z, does not decrease
the approximation error, it is still possible that z,z,z, will decrease it for some
z,. So in order to decide whether to create a new feature that is a product with
zp, the algorithm must “look-ahead” to determine if there exists any polynomial a
in the z;’s such that inclusion of az, would significantly decrease the error. If no
such polynomial exists, then we do not need to consider adding any features that
are products with z,.

Define the inner product between two polynomials a and b as (a|b) = E[ab] where
the expected value is taken with respect to a probability measure y over the (zero-
mean) input values. The induced norm is ||a||* = E[a?], and let P be the set of
polynomials with finite norm. {P, (-|-}} is then an infinite-dimensional linear vector
space. The Weierstrass approximation theorem proves that P is dense in the set of
all square-integrable functions over u, and thus justifies the assumption that any
function of interest can be approximated by a member of P.

Assume that the error e is a polynomial in P. In order to test whether az, partic-
ipates in e for any polynomial a € P, we write

e=apzp+by

1065

1066

Sanger, Sutton, and Matheus

Figure 2: Incorporation of a new product term into the model.

where a, and b, are polynomials, and a, is chosen to minimize |lap,z, — €||* =

E[(apz, — €)?]. The orthogonality principle then shows that ap:r:,, is the projection
of the polynomial e onto the linear subspace of polynomials z,P. Therefore, b, is
orthogonal to z, P, so that E[b,g] = 0 for all g in z,P.

We now write
E[e?] = Ela2z2] + 2E[apz,b,] + Eb2] = E[aZz?] + E[b?]

since Efayz,b,] = 0 by orthogonality. If a,z, were included in the model, it would

thus reduce E[e?] by E[a%], so we wish to choose z, to maximize E[aZz2]. Un-
fortunately, we have no dlrect measurement of a,,.

3 METHODS

Although E[af,zf,] cannot be measured directly, Sanger (1991) suggests choosing z,
to maximize £ [ezzf,] instead, which is directly measurable. Moreover, note that

Ele’z]] = Elalz]+ 2E[ayz3b,) +E'[..":2f;t2
= E[a
and thus E[ezxz] is related to the desxred but unknown value E[a . Perhaps
better would be to use "
Ele’z]) _ E[ap:cP
Elz3] E[z}]
which can be thought of as the regression of (af,:cg):c,, against z,.

More recently, (Sutton and Matheus 1991) suggest using the regresswn coefficients
of e? agamst z? for all i as the basis for comparison. The regression coefficients w;
are called ¢ potentlals , and lead to a linear approximation of the squared error:

n
e? :ngm? (1)

i=1

Iterative Construction of Sparse Polynomial Approximations

If a new term apz, were included in the model of f, then the squared error would
be b2 which is orthogonal to any polynomial in z,P and in particular to z2. Thus
the coefficient of :1:3 in (1) would be zero after inclusion of a,z,, and wp E [;z:f,] is an
approximation to the decrease in mean-squared error Efe?] — E[b2] which we can
expect from inclusion of a,z,. We thus choose z, by maximizing w, E[z}].

This procedure is a form of look-ahead which allows us to predict the utility of a
high-order term a,z, without actually including it in the regression. This is perhaps
most useful when the term is predicted to make only a small contribution for the
optimal a,, because in this case we can drop from consideration any new features
that include z,.

We can choose a different variable z, similarly, and test the usefulness of incorporat-
ing the product z,z, by computinga “joint potential” w,, which is the regression of
the squared error against the model including a new term zﬁzg. The joint potential

attempts to predict the magnitude of the term E [Clgq :cg xg A

We now use this method to choose a single new feature 2,2, to include in the model.
For all pairs z;z; such that z; and z; individually have Fligh potentials, we perform
a third regression to determine the joint potentials of the product terms z;z;. Any
term with a high joint potential is likely to participate in f. We choose to include the
new term z,z, with the largest joint potential. In the network model, this results in
the construction of a new unit that computes the product of z, and z,, as in figure
2. The new unit is incorporated into the regression, and the resulting error e will
be orthogonal to this unit and all previous units. Iteration of this technique leads
to the successive addition of new regression terms and the successive decrease in
mean-squared error E[e?]. The process stops when the residual mean-squared error
drops below a chosen threshold, and the final model consists of a sparse polynomial
in the original inputs.

We have implemented this algorithm both in a non-iterative version that computes
coefficients and potentials based on a fixed data set, and in an iterative version that
uses the LMS algorithm (Widrow and Hoff 1960) to compute both coefficients and
potentials incrementally in response to continually arriving data. In the iterative
version, new terms are added at fixed intervals and are chosen by maximizing over
the potentials approximated by the LMS algorithm. The growing polynomial is
efficiently represented as a tree-structure, as in (Sanger 1991a).

Although the algorithm involves three separate regressions, each is over only O(n)
terms, and thus the iterative version of the algorithm is only of O(n) complexity
per input pattern processed.

4 RELATION TO OTHER ALGORITHMS

Approximation of functions over a fixed monomial basis is not a new technique
(Gabor 1961, for example). However, it performs very poorly for high-dimensional
input spaces, since the set of all monomials (even of very low order) can be pro-
hibitively large. This has led to a search for methods which allow the generation of
sparse polynomials. A recent example and bibliography are provided in (Grigoriev
et al. 1990), which describes an algorithm applicable to finite fields (but not to

1067

1068

Sanger, Sutton, and Matheus

Figure 3: Products of hidden units in a sigmoidal feedforward network lead to a
polynomial in the hidden units themselves.

real-valued random variables).

The GMDH algorithm (Ivakhnenko 1971, Ikeda et al. 1976, Barron et al. 1984)
incrementally adds new terms to a polynomial by forming a second (or higher)
order polynomial in 2 (or more) of the current terms, and including this polynomial
as a new term if it correlates with the error. Since GMDH does not use look-ahead,
it risks avoiding terms which would be useful at future steps. For example, if the
polynomial to be approximated is zyz where all three variables are independent,
then no polynomial in z and y alone will correlate with the error, and thus the
term zy may never be included. However, z%y? does correlate with z2y%22, so
the look-ahead algorithm presented here would include this term, even though the
error did not decrease until a later step. Although GMDH can be extended to
test polynomials of more than 2 variables, it will always be testing a finite-order
polynomial in a finite number of variables, so there will always exist target functions
which it will not be able to approximate.

Although look-ahead avoids this problem, it is not always useful. For practical
purposes, we may be interested in the best N th-order approximation to a function,
so it may not be helpful to include terms which participate in monomials of order
greater than N, even if these monomials would cause a large decrease in error.
For example, the best 2nd-order approximation to z2? + y'%0 4 21000 may be z2,
even though the other two terms contribute more to the error. In practice, some
combination of both infinite look-ahead and GMDH-type heuristics may be useful.

5 APPLICATION TO OTHER STRUCTURES

These methods have a natural application to other network structures. The inputs
to the polynomial network can be sinusoids (leading to high-dimensional Fourier
representations), Gaussians (leading to high-dimensional Radial Basis Functions)
or other appropriate functions (Sanger 1991a, Sanger 1991b). Polynomials can

