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ABSTRACT 

We present JANUS, a speech-to-speech translation system that utilizes 
diverse processing strategies, including connectionist learning, tradi­
tional AI knowledge representation approaches, dynamic programming, 
and stochastic techniques. JANUS translates continuously spoken 
English and German into German, English, and Japanese. JANUS cur­
rently achieves 87% translation fidelity from English speech and 97% 
from German speech. We present the JANUS system along with com­
parative evaluations of its interchangeable processing components, with 
special emphasis on the connectionist modules. 
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1 INTRODUCTION 

In an age of increasing globalization of our economies and ever more efficient communi­
cation media. one important challenge is the need for effective ways of overcoming lan­
guage barriers. Human translation efforts are generally expensive and slow. thus 
eliminating this possibility between individuals and around rapidly changing material (e.g. 
newscasts. newspapers). This need has recently lead to a resurgence of effort in machine 
translation-mostly of written language. 

Much of human communication. however. is spoken, and the problem of spoken language 
translation must also be addressed. If successful. speech-to-text translation systems could 
lead to automatic subtitles in TV-broadcasts and cross-linguistic dictation. Speech-to­
speech translation could be deployed as interpreting telephone service in restricted domains 
such as cross-linguistic hoteVconference reservations. catalog purchasing, travel planning, 
etc., and eventually in general domains. such as person-to-person telephone calls. Apart 
from telephone service. speech translation could facilitate multilingual negotiations and 
collaboration in face-to-face or video-conferencing settings. 

With the potential applications so promising, what are the scientific challenges? Speech 
translation systems will need to address three distinct problems: 

• Speech Recognition and Understanding: A naturally spoken utterance must be recog­
nized and understood in the context of ongoing dialog. 

• Machine Translation: A recognized message must be translated from one language 
into another (or several others). 

• Speech Synthesis: A translated message must be synthesized in the target language. 

Considerable challenges still face the development of each of the components, let alone the 
combination of the three. Among them only speech synthesis is mature enough for com­
mercial systems to exist that can synthesize intelligible speech in several languages from 
text But even here, to guarantee acceptance of the translation system, research is needed to 
improve naturalness and to allow for adaptation of the output speech (in the target lan­
guage) to the voice characteristics of the input speaker. Speech recognition systems to date 
are generally limited in vocabulary size. and can only accept grammatically well-formed 
utterances. They require improvement to handle spontaneous unrestricted dialogs. Machine 
Translation systems require considerable development effort to work in a given language 
pair and domain reasonably well, and generally require syntactically well-formed input 
sentences. Improvements are needed to handle ill-formed sentences well and to allow for 
flexibility in the face of changes in domain and language pairs. 

Beyond the challenges facing each system component, the combination of the three also 
introduces extra difficulties. Both the speech recognition and machine translation compo­
nents, must deal with spoken languager-ill-formed noisy input, both acoustically as well 
as syntactically. Therefore, the speech recognition component must be concerned less with 
transcription fidelity than semantic fidelity, while the MT-component must try to capture 
the meaning or intent of the input sentence without being guaranteed a syntactically legal 
sequence of words. In addition, non-symbolic prosodic information (intonation, rhythm, 
etc.) and dialog state must be taken into consideration to properly translate an input utter­
ance. A closer cooperation between traditional signal processing and language level pro­
cessing must be achieved. 
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Figure 1: High-level JANUS architecture 

JANUS is our first attempt at multilingual speech translation. It is the result of a collabora­
tive effort between AlR Interpreting Telephony Research Laboratories, Carnegie Mellon 
University, Siemens Corporation, and the University of Karlsruhe. JANUS currently 
accepts continuously spoken sentences from a conference registration scenario, where a fic­
titious caller attempts to register to an international conference. The dialogs are read aloud 
from dialog scripts that make use of a vocabulary of approximately 400 words. Speaker­
dependent and independent versions of the input recognition systems have been developed. 
JANUS currently accepts continuously spoken English and German input and produces 
spoken German, English, and Japanese output as a result. 

While JANUS has some of the limitations mentioned above, it is the first tri-lingual contin­
uous large vocabulary speech translation system to-date. It is a vehicle toward overcoming 
some of the limitations described. A particular focus is the trainability of system compo­
nents, so that flexible, adaptive, and robust systems may result. JANUS is a hybrid system 
that uses a blend of computational strategies: connectionist, statistical and knowledge 
based techniques. This paper will describe each of JANUS's processing components sepa­
rately and particularly highlight the relative contributions of connectionist techniques 
within this ensemble. Figure 1 shows a high-level diagram of JANUS's components. 

2 SPEECH RECOGNITION 

Two alternative speech recognition systems are currently used in JANUS: Linked Predic­
tive Neural Networks (LPNNs) and Learned Vector Quantization networks (LVQ) (Tebel­
skis et al. 1991; Schmidbauer and Tebelskis 1992). They are both connectionist, 
continuous-speech recognition systems, and both have vocabularies of approximately 400 
English and 400 German words. Each use statistical bigram or word-pair grammars 
derived from the conference registration database. The systems are based on canonical 
phoneme models (states) that can be logically concatenated in any order to create models 
for different words. The need for training data with labeled phonemes can be reduced by 
first bootstrapping the networks on a small amount of speech with forced phoneme bound­
aries, then training on the whole database using only forced word boundaries. 

In the LPNN system, each phoneme model is implemented by a predictive neural network. 
Each network is trained to accurately predict the next frame of speech within segments of 
speech corresponding to its phoneme model. Continuous scores (prediction errors) are 
accumulated for various word candidates. The LPNN module produces either a single 
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hypothesized sentence or the first N best hypotheses using a modified dynamic-program­
ming beam-search algorithm (Steinbiss 1989). The LPNN system has speaker-dependent 
word accuracy rates of 93% with first-best recognition, and sentence accuracy of 69%. 

LVQ is a vector clustering technique based on neural networks. We have used LVQ to 
automatically cluster speech frames into a set of acoustic features; these features are fed 
into a set of output units that compute the emission probability for HMM states. This tech­
nique gives speaker-dependent word accuracy rates of 98%,86%, and 82% for English 
conference registration tasks of perplexity 7, 61, and Ill, respectively. The sentence rec­
ognition rate at perplexity 7 is 80%. 

We are also evaluating other approaches to speech recognition, such as the Multi-State 
TDNN for continuous-speech (Haffner, Franzini, and Waibel 1991) and a neural-network 
based word spotting system that may be useful for modeling spontaneous speech effects 
(Zeppenfield and Waibel 1992). The recognitions systems' text output serves as input to 
the alternative parsing modules of JANUS. 

3 LANGUAGE UNDERSTANDING AND TRANSLATION 

3.1 LANGUAGE ANALYSIS 

The translation module of JANUS is based on the Universal Parser Architecture (UPA) 
developed at Carnegie Mellon (Tomita and Carbonell 1987; Tomita and Nyberg 1988). It 
is designed for efficient multi-lingual translation. Text in a source language is parsed into a 
language independent frame-based inter lingual representation. From the interlingua, text 
can be generated in different languages. 

The system requires hand-written parsing and generation grammars for each language to 
be processed. The parsing grammars are based on a Lexical Functional Grammar formal­
ism, and are implemented using Tomita's Generalized LR parsing Algorithm (Tomita 
1991). The generation grammars are compiled into LISP functions. Both parsing and gen­
eration with UP A approach real-time. Figure 2 shows an example of the input, interlingual 
representation, and the output of the JANUS system 

3.2 PARSEC: CONNECTIONIST PARSING 

JANUS can use a connectionist parser in place of the LR parser to process the output of 
the speech system. PARSEC is a structured connectionist parsing architecture that is 
geared toward the problems found in spoken language (for details, see Jain 1992 (in this 
volume) and Jain's PhD thesis, in preparation). PARSEC networks exhibit three strengths: 

• They automatically learn to parse, and generalize well compared to hand-coded 
grammars. 

• They tolerate several types of noise without any explicit noise modeling. 
• They can learn to use multi-modal input such as pitch in conjunction with syntax and 

semantics. 

The PARSEC network architecture relies on a variation of supervised back-propagation 
learning. The architecture differs from some other connectionist approaches in that it is 
highly structured, both at the macroscopic level of modules. and at the microscopic level 
of connections. 
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Input 
Hello is this the office for the conference. 

Interlingual Representation 
((CFNAME *is-this-phone) 

(MOOD *interrogative) 
(OBJECT ((NUMBER sg) (DET the) 

(CFNAME *conf-office))) 
(SADJUNCTl ((CFNAME *hello)))) 

Output 
Japanese: MOSHI MOSHI KAIGI JIMUKYOKU DESUKA 
German: HALLO 1ST DIES DAS KONFERENZBUERO 

Figure 2: Example of input, interlingua, and output of JANUS 

3.2.1 Learning and Generalization 

Through exposure to example output parses, PARSEC networks learn parsing behavior. 
Trained networks generalize well compared to hand-written grammars. In direct tests of 
coverage for the conference registration domain, PARSEC achieved 67% correct parsing 
of novel sentences, whereas hand-written grammars achieved just 5%,25%, and 38% cor­
recl Two of the grammars were written as part of a contest with a large cash prize for best 
coverage. 

The process of training PARSEC networks is highly automated, and is made possible 
through the use of constructive learning coupled with a robust control procedure that 
dynamically adjusts learning parameters during training. Novice users of the PARSEC 
system were able to train networks for parsing a German-language version of the confer­
ence registration task and a novel English air-travel reservation task. 

3.2.2 Noise Tolerance 

We have compared PARSEC's performance on noisy input with that of hand-written 
grammars. On synthetic ungrammatical conference registration sentences, PARSEC pro­
duced acceptable interpretations 66% of the time, with the three hand-coded grammars 
mentioned above performing at 2%, 38%, and 34%, respectively. We have also evaluated 
PARSEC in the context of noisy speech recognition in JANUS, and this is discussed later. 

3.2.3 Multi-Modal Input 

A somewhat elusive goal of spoken language processing has been to utilize information 
from the speech signal beyond just word sequences in higher-level processing. It is well 
known that humans use such information extensively in conversation. Consider the utter­
ances "Okay." and "Okay?" Although semantically distinct, they cannot be distinguished 
based on word sequence, but pitch contours contain the necessary information (Figure 3). 
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FILE: S.O.O "Okay." duration = 409.1 msec, mean freq = 113.2 
0.1 *.......... . ........... . 
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FILE: q.O.O "Okay?- duration = 377.0 msec, mean freq = 137.3 
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Figure 3: Smoothed pitch contours. 

........ 

In a grammar-based system, it is difficult to incorporate real-valued vector input in a use­
ful way. In a PARSEC network, the vector is just another set of input units. A module of a 
PARSEC network was augmented to contain an additional set of units that contained pitch 
information. The pitch contours were smoothed output from the OGI Neural Network 
Pitch Tracker (Barnard et al. 1991). 

Within the JANUS system, the augmented PARSEC network brings new functionality. 
Intonation affects translation in JANUS when using the augmented PARSEC network. 
The sentence, "This is the conference office." is translated to "Kaigi jimukyoku desu." 
"This is the conference office?" is translated to ''Kaigi jimukyoku desuka?" This required 
no changes in the other modules of the JANUS system. It also should be possible to use 
other types of information from the speech signal to aid in robust parsing (e.g. energy pat­
terns to disambiguate clausal structure). 

4 SPEECH SYNTHESIS 

To generate intelligible speech in the respective target languages, we have predominantly 
used commercial devices. Most notably, DEC-talk has provided unrestricted English text­
to-speech synthesis. DEC-talk has also been used for Japanese and German synthesis. The 
internal English text-to-phoneme conversion rules and tables of DEC-talk were bypassed 
by external German and Japanese text-to-phoneme look-up tables that convert the Ger­
man/Japanese target sentences into phonemic strings for DEC-talk synthesis. The result­
ing synthesis is limited to the task vocabulary, but the external tables result in intelligible 
German and Japanese speech-albeit with a pronounced American accent 

To allow for greater flexibility in vocabulary and more language specific synthesis, several 
alternate devices are currently being integrated. For Japanese, in particular, two high qual­
ity speech synthesizers developed separately by NEC and A1R will be used to provide 
more satisfactory results. In JANUS, no attempt has so far been made to adapt the output 
speech to the input speaker's voice characteristics. However, this has recently been dem­
onstrated by work with code book mapping (Abe, Shikano, and Kuwabara 1990) and con­
nectionist mapping techniques (Huang, Lee, and Waibel 1991). 
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5 IMPLEMENTATION ISSUES AND PERFORMANCE 

5.1 Parallel Hardware 

Neural network forward passes for the speech recognizer were programmed on two gen­
eral purpose parallel machines. a MasPar computer at the University of Karlsruhe, Ger­
many and an Intel iWarp at Carnegie Mellon. The MasPar is a parallel SIMD machine 
with 4096 processing elements. The iWarp is a MIMD machine, and a 16MHz, 64 cell 
experimental version was used for testing. 

The use of parallel hardware and algorithms has significantly decreased JANUS's process­
ing time. Compared to forward pass calculations performed by a DecStation 5000, the 
iWarp is 9 times faster (41.4 million connections per second). The MasPar does the for­
ward pass calculations for a two second utterance in less than 500 milliseconds. Both the 
iWarp and MasPar are scalable. Efforts are underway to implement other parts of JANUS 
on parallel hardware with the goal of near real-time performance. 

5.2 Performance 

Currently, English JANUS using the LR parsing module (JANUS-LR) performs at 87% 
correct translation using the LPNN speech system with the N-best sentence hypotheses. 
Gennan JANUS performs at 97% correct translation (on a subset of the conference regis­
tration database) using Gennan versions of the LPNN system and LR parsing grammar. 

English JANUS using PARSEC (JANUS-NN) does not perform as well as the LR parser 
version in N-best mode, with 80% correct translation. PARSEC is not able to select from a 
list of ranked candidate utterance hypotheses as robustly as is the LR parser using a very 
tight grammar. However, the grammar used for this comparison only achieves 5% cover­
age of novel test sentences, compared with PARSEC's 67%. This vast difference in cover­
age explains some of the N -best performance difference. 

In First-best mode, however, JANUS-NN does better than J ANUS-LR (77% versus 70%). 
The PARSEC network is able to produce acceptable parses for a number of noisy speech 
recognition hypotheses, but JANUS-LR tends to reject those hypotheses as unparsable. 
PARSEC's flexibility, which hurt its N-best performance, enhances its F-best perfor­
mance. No performance evaluations were carried out using German PARSEC in German 
JANUS. 

6 CONCLUSION 

In this paper we have described JANUS, a multi-lingual speech-to-speech translation sys­
tem. JANUS uses a mixture of connectionist, statistical and rule based strategies to achieve 
this goal. Connectionist models have contributed in providing high performance recogni­
tion and parsing performance as well as greater robustness in the light of task variations and 
syntactically ill-formed sentences. Connectionist models also provide a mechanism for 
merging traditionally distinct symbolic (syntax) and signal-level (intonation) information 
gracefully and achieve successful disambiguation between grammatical statements whose 
mood can be affected by intonation. Finally, connectionist sentence analysis appears to 
offer high flexibility as the relevant modules can be retrained automatically for new tasks, 
domains and even languages without laborious recoding. We plan to continue exploring 
different mixtures of computing paradigms to achieve higher performance. 
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