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Abstract 

The localized linear discriminant network (LLDN) has been designed to address 
classification problems containing relatively closely spaced data from different 
classes (encounter zones [1], the accuracy problem [2]). Locally trained hyper­
plane segments are an effective way to define the decision boundaries for these 
regions [3]. The LLD uses a modified perceptron training algorithm for effective 
discovery of separating hyperplane/sigmoid units within narrow boundaries. The 
basic unit of the network is the discriminant receptive field (DRF) which combines 
the LLD function with Gaussians representing the dispersion of the local training 
data with respect to the hyperplane. The DRF implements a local distance mea­
sure [4], and obtains the benefits of networks oflocalized units [5]. A constructive 
algorithm for the two-class case is described which incorporates DRF's into the 
hidden layer to solve local discrimination problems. The output unit produces a 
smoothed, piecewise linear decision boundary. Preliminary results indicate the 
ability of the LLDN to efficiently achieve separation when boundaries are narrow 
and complex, in cases where both the "standard" multilayer perceptron (MLP) 
and k-nearest neighbor (KNN) yield high error rates on training data. 

1 The LLD Training Algorithm and DRF Generation 

The LLD is defined by the hyperplane normal vector V and its "midpoint" M (a translated 
origin [1] near the center of gravity of the training data in feature space). Incremental 
corrections to V and M accrue for each training token feature vector Y j in the training 
set, as iIlustrated in figure 1 (exaggerated magnitudes). The surface of the hyperplane is 
appropriately moved either towards or away from Yj by rotating V, and shifting M along 
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the axis defined by V~ M is always shifted towards Yj in the "radial" direction Rj (which is 
the componerit of D j orthogonal to V, where D j = Yj - M): 
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Figure 1: LLD incremental correction vectors associated with training token Y j are shown 
above, and the corresponding LLD update rules below: 

ilV = ]L(n) Lil~ = ]L(n) L(-Se~e8j)0 
j j IIDjl1 

llMv = yen) L llMVj = yen) L( -SeWe8j)V 
j j 

llMR = f3(n) L llMRj = f3(n) L(We8j)~ 
j j 

The batch mode summation is over tokens in the local training set, and n is the iteration 
index. The polarity of ilVj and ilMRj is set by Se (c = the class of Yj), where Se = 1 if Yj is 
classified correctly, and Se = -1 if not. Corrections for each token are scaled by a sigmoidal 
error term: 8j = 1/(1 + exp «se1J/ A) I VTDj I», a function of the distance of the token to 
the plane, the sign of Se, and a data-dependent scaling parameter: A = I VT[B~ - B~] I, where 
1J is a fixed (experimental) scaling parameter. The scaling of the sigmoid is proportional 
to an estimate of the boundary region width along the axis of V. Be is a weighted average 
of the class c token vectors: Be(n + 1) = (1 - a)Be(n) + aWe EjEe €j.e(n)Yj(n), where €j.e 
is a sigmoid with the same scaling as 8j, except that it is centered on Be instead of M, 
emphasizing tokens of class c nearest the hyperplane surface. For small1J's, Be will settle 
near the cluster center of gravity, and for large 1J's, Be will approach the tokens closest to 
the hyperplane surface. (The rate of the movement of Be is limited by the value of a, which 
is not critical.) The inverse of the number of tokens in class c, We, balances the weight 
of the corrections from each class. If a more Bayesian-like solution is required, the slope 
of 8 can be made class dependent (for example, replacing 1J with 1J e ex: we). Since the 
slope of the sigmoid error term is limited and distribution dependent, the use of We, along 
with the nonlinear weighting of tokens near the hyperplane surface, is important for the 
development of separating planes in relatively narrow boundaries (the assumption is that 
the distributions near these boundaries are non-Gaussian). The setting of 1J simultaneously 
( for convenience) controls the focus on the "inner edges" of the class clusters and the slope 
of the sigmoid relative to the distance between the inner edges, with some resultant control 
over generalization performance. This local scaling of the error also aids the convergence 
rate. The range of good values for 1J has been found to be reasonably wide, and identical 
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values have been used successfully with speech, ecg, and synthetic data; it could also 
be set/optimized using cross-validation. Separate adaptive learning rates (/L(n), yen), and 
f3(n» are used in order to take advantage ofthe distinct nature of the geometric function of 
each component. Convergence is also improved by maintaining M within the local region; 
this controls the rate at which the hyperplane can sweep through the boundary region, 
making the effect of Ll V more predictable. The LLD normal vector update is simply: 

V(n + 1) = (V(n) + LlV)/I!V(n) + LlVII ,so that V is always normalized to unit magnitude. 

The midpoint is just shifted: M(n + 1) = M(n) + LlMR + ~v . 
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Figure 2: Vectors and parameters associated with the DRF for class c, for LLD k 

DRF's are used to localize the response of the LLD to the region of feature space in which 
it was trained, and are constructed after completion ofLLD training. Each DRF represents 
one class, and the localizing component of the DRF is a Gaussian function based on simple 
statistics of the training data for that class. Two measures of the dispersion of the data are 
used: O'v ("normal" dispersion), obtained using the mean average deviation of the lengths of 
Pj,k,c, and O'R ("radial" dispersion), obtained correspondingly using the 0 j,k,c'S. (As shown, 
Pj,k,c is the normal component, and OJ,k,c the radial component of Y j - Bk,c') The output in 
response to an input vector Yj from the class c DRF associated with the LLD k is cPj,k,c: 

cPj,k,c = Eh,c(Sj,k -0.5)/ exp( d2:. +d2:. ); v J,k,c R,j,k,c 

Two components of the DRF incorporate the LLD discriminant; one is the sigmoid error 
function used in training the LLD but shifted down to a value of zero at the hyperplane 
surface.' The other is E> k,c, which is 1 if Yj is on the class c side of LLD k, and zero if 
not. (In retrospect, for generalization performance, it may not be desirable to introduce 
this discontinuity to the discriminant component.) The contribution of the Gaussian is 
based on the normal and radial dispersion weighted distances of the input vector to B k,c: 

dVJ,k,C = IIPj,k,cll/O'V,k,C' and . dRJ,k,c = IIOj,k,cll/O'R,k,C' 

2 Network Construction 

Segmentation of the boundary between classes is accomplished by "growing" LLD's within 
the boundary region. An LLD is initialized using a closely spaced pair of tokens from each 
class. The LLD is grown by adding nearby tokens to the training set, using the k-nearest 
neighbors to the LLD midpoint at each growth stage as candidates for permanent inclusion. 
Candidate DRF's are generated after incremental training of the LLD to accommodate each 
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new candidate token. Two error measures are used to assess the effect of each candidate, the 
peak value of Bj over the local training set, and 'UJ', which is a measure of misc1assification 
error due to the receptive fields of the candidate DRF's extending over the entire training 
set. The candidate token with the lowest average 'UJ' is permanently added, as long as both 
its Bj and 'UJ' are below fixed thresholds. Growth the the LLD is halted if no candidate has 
both error measures below threshold. The B j and 'UJ' thresholds directly affect the granularity 
of the DRF representation of the data; they need to be set to minimize the number of DRF's 
generated, while allowing sufficient resolution of local discrimination problems. They 
should perhaps be adaptive so as to encourage coarse grained solutions to develop before 
fine grain structure. 

Figure 3: Four "snapshots" in the growth of an LLD/DRF pair. The upper two are "c1ose­
ups." The initial LLD/DRF pair is shown in the upper left, along with the seed pair. Filled 
rectangles and ellipses represent the tokens from each class in the permanent local training 
set at each stage. The large markers are the B points, and the cross is the LLD midpoint. 
The amplitude of the DRF outputs are coded in grey scale. 










