
Tangent Prop - A formalism for specifying
selected invariances in an adaptive network

Patrice Simard
AT&T Bell Laboratories
101 Crawford Corner Rd

Holmdel, NJ 07733

Yann Le Cun
AT&T Bell Laboratories
101 Crawford Corner Rd

Holmdel, NJ 07733

Abstract

Bernard Victorri
Universite de Caen
Caen 14032 Cedex

France

John Denker
AT&T Bell Laboratories
101 Crawford Corner Rd

Holmdel, NJ 07733

In many machine learning applications, one has access, not only to training
data, but also to some high-level a priori knowledge about the desired be­
havior of the system. For example, it is known in advance that the output
of a character recognizer should be invariant with respect to small spa­
tial distortions of the input images (translations, rotations, scale changes,
etcetera).
We have implemented a scheme that allows a network to learn the deriva­
tive of its outputs with respect to distortion operators of our choosing.
This not only reduces the learning time and the amount of training data,
but also provides a powerful language for specifying what generalizations
we wish the network to perform.

1 INTRODUCTION

In machine learning, one very often knows more about the function to be learned
than just the training data. An interesting case is when certain directional deriva­
tives of the desired function are known at certain points. For example, an image

895

896 Simard, Victorri, Le Cun, and Denker

Figure 1: Top: Small rotations of an original digital image of the digit "3" (center).
Middle: Representation of the effect of the rotation in the input vector space space
(assuming there are only 3 pixels). Bottom: Images obtained by moving along the
tangent to the transformation curve for the same original digital image (middle) .

recognition system might need to be invariant with respect to small distortions of
the input image such as translations, rotations, scalings, etc.; a speech recognition
system n.ight need to be invariant to time distortions or pitch shifts. In other
words, the derivative of the system's output should be equal to zero when the input
is transformed in certain ways.

Given a large amount of training data and unlimited training time, the system
could learn these invariances from the data alone, but this is often infeasible. The
limitation on data can be overcome by training the system with additional data
obtained by distorting (translating, rotating, etc.) the original patterns (Baird,
1990). The top of Fig. 1 shows artificial data generated by rotating a digital image of
the digit "3" (with the original in the center). This procedure, called the "distortion
model" , has two drawbacks. First, the user must choose the magnitude of distortion
and how many instances should be generated. Second, and more importantly, the
distorted data is highly correlated with the original data. This makes traditional
learning algorithms such as back propagation very inefficient. The distorted data
carries only a very small incremental amount of information, since the distorted
patterns are not very different from the original ones. It may not be possible to
adjust the learning system so that learning the invariances proceeds at a reasonable
rate while learning the original points is non-divergent.

The key idea in this paper is that it is possible to directly learn the effect on
the output of distorting the input, independently from learning the undistorted

Tangent Prop-A formalism for specifying selected invariances in an adaptive network 897

F(x) F(x)

x1 x2 x3 x4 x x1 x2 x3 x4 x

Figure 2: Learning a given function (solid line) from a limited set of example (Xl
to X4). The fitted curves are shown in dotted line. Top: The only constraint is that
the fitted curve goes through the examples. Bottom: The fitted curves not only
goes through each examples but also its derivatives evaluated at the examples agree
with the derivatives of the given function.

patterns. When a pattern P is transformed (e.g. rotated) with a transformation
s that depends on one parameter a (e.g. the angle of the rotation), the set of all
the transformed patterns S(P) = {sea, P) Va} is a one dimensional curve in the
vector space of the inputs (see Fig. 1). In certain cases, such as rotations of digital
images, this curve must be made continuous using smoothing techniques, as will be
shown below. When the set of transformations is parameterized by n parameters
ai (rotation, translation, scaling, etc.), S(P) is a manifold of at most n dimensions.
The patterns in S(P) that are obtained through small transformations of P, i.e.
the part of S(P) that is close to P, can be approximated by a plane tangent to
the manifold S(P) at point P. Small transformations of P can be obtained by
adding to P a linear combination of vectors that span the tangent plane (tangent
vectors). The images at the bottom of Fig. 1 were obtained by that procedure.
More importantly, the tangent vectors can be used to specify high order constraints
on the function to be learned, as explained below.

To illustrate the method, consider the problem of learning a single-valued function
F from a limited set of examples. Fig. 2 (left) represents a simple case where the
desired function F (solid line) is to be approximated by a function G (dotted line)
from four examples {(Xi, F(Xi))}i=1,2,3,4. As exemplified in the picture, the fitted
function G largely disagrees with the desired function F between the examples. If
the functions F and G are assumed to be differentiable (which is generally the case),
the approximation G can be greatly improved by requiring that G's derivatives
evaluated at the points {xd are equal to the derivatives of F at the same points
(Fig. 2 right). This result can be extended to multidimensional inputs. In this case,
we can impose the equality of the derivatives of F and G in certain directions, not
necessarily in all directions of the input space.

Such constraints find immediate use in traditional learning problems. It is often the
case that a priori knowledge is available on how the desired function varies with

898 Simard, Victorri, Le Cun, and Denker

pattern P pattern P
rotated by ex

-
--

tangent
vector

Figure 3: How to compute a tangent vector for a given transformation (in this case
a rotation).

respect to some transformations of the input. It is straightforward to derive the
corresponding constraint on the directional derivatives of the fitted function G in
the directions of the transformations (previously named tangent vectors). Typical
examples can be found in pattern recognition where the desired classification func­
tion is known to be invariant with respect to some transformation of the input such
as translation, rotation, scaling, etc., in other words, the directional derivatives of
the classification function in the directions of these transformations is zero.

2 IMPLEMENTATION

The implementation can be divided into two parts. The first part consists in com­
puting the tangent vectors. This part is independent from the learning algorithm
used subsequently. The second part consists in modifying the learning algorithm
(for instance backprop) to incorporate the information about the tangent vectors.

Part I: Let x be an input pattern and s be a transformation operator acting
on the input space and depending on a parameter a. If s is a rotation operator
for instance, then s(a, x) denotes the input x rotated by the angle a. We will
require that the transformation operator s be differentiable with respect to a and
x, and that s(O, x) = x. The tangent vector is by definition 8s(a, x)/8a. It can be
approximated by a finite difference, as shown in Fig. 3. In the figure, the input space
is a 16 by 16 pixel image and the patterns are images of handwritten digits. The
transformations considered are rotations of the digit images. The tangent vector
is obtained in two steps. First the image is rotated by an infinitesimal amount a.
This is done by computing the rotated coordinates of each pixel and interpolating
the gray level values at the new coordinates. This operation can be advantageously
combined with some smoothing using a convolution. A convolution with a Gaussian
provides an efficient interpolation scheme in O(nm) multiply-adds, where nand m
are the (gaussian) kernel and image sizes respectively. The next step is to subtract
(pixel by pixel) the rotated image from the original image and to divide the result

Tangent Prop-A formalism for specifying selected invariances in an adaptive network 899

by the scalar 0 (see Fig. 3). If Ie types of transformations are considered, there
will be Ie different tangent vectors per pattern. For most algorithms, these do not
require any storage space since they can be generated as needed from the original
pattern at negligible cost.

Part IT: Tangent prop is an extension of the backpropagation algorithm, allowing
it to learn directional derivatives. Other algorithms such as radial basis functions
can be extended in a similar fashion.

To implement our idea, we will modify the usual weight-update rule:

oE 0
~w = -7] ow is replaced with ~w = -7] ow (E + J.tEr) (1)

where 7] is the learning rate, E the usual objective function, Er an additional objec­
tive function (a regularizer) that measures the discrepancy between the actual and
desired directional derivatives in the directions of some selected transformations,
and J.t is a weighting coefficient.

Let x be an input pattern, y = G(x) be the input-output function of the network.
The regularizer Er is of the form

Er(x)
:e e trainingset

where Er(x) is

(2)

Here, Ki(x) is the desired directional derivative of G in the direction induced by
transformation Si applied to pattern x. The second term in the norm symbol is the
actual directional derivative, which can be rewritten as

= G'{x). OSi(O, x)
0=0 00 0=0

where G'(x) is the Jacobian of G for pattern x, and OSi(O, x)Joo is the tangent
vector associated to transformation Si as described in Part I. Multiplying the tangent
vector by the Jacobian involves one forward propagation through a "linearized"
version of the network. In the special case where local invariance with respect to
the Si'S is desired, Ki(x) is simply set to o.
Composition of transformations: The theory of Lie groups (Gilmore, 1974)
ensures that compositions of local (small) transformations Si correspond to linear
combinations of the corresponding tangent vectors (the local transformations Si
have a structure of Lie algebra). Consequently, if Er{x) = 0 is verified, the network
derivative in the direction of a linear combination of the tangent vectors is equal
to the same linear combination of the desired derivatives. In other words if the
network is successfully trained to be locally invariant with respect to, say, horizontal
translation and vertical translations, it will be invariant with respect to compositions
thereof.

We have derived and implemented an efficient algorithm, "tangent prop" , for per­
forming the weight update (Eq. 1). It is analogous to ordinary backpropagation,

900 Simard, Victorri, Le Cun, and Denker

b'.-l ,

W'+l
Iti

'-I x· ,
Network

W l+ 1
Iti

e: l

j3J-1 e;-I
Jacobian nework

Figure 4: forward propagated variables (a, x, a, e), and backward propagated vari­
ables (b, y, p, t/J) in the regular network (roman symbols) and the Jacobian (lin­
earized) network (greek symbols)

but in addition to propagating neuron activations, it also propagates the tangent
vectors. The equations can be easily derived from Fig. 4.

Forward propagation:

�a�~� = �~� wLx'.-l • L...J I, ,
i

Tangent forward propagation:

, _ �~� , �~�'�-�1�
ai - L...J wW"i

i

Tangent gradient backpropagation:

(31 - �~� w'+1.I.l+1
i - L...J Iti ¥lit

It

Gradient backpropagation:

b' - �~� w1+1yl+1
i - L...J Iti It

It

Weight update:

�x�~� = u(aD

e! = �u�'�(�a�~�)�a�~�

8[E(W, Up) + I'Er (W, Up, Tp)] _ 1-1 , + �~�'�-�l�.�I�.�'�
8 ' - Xi Yi I'\oi ¥Ii w·· I,

(3)

(4)

(5)

(6)

(7)

