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Abstract 

I exhibit a systematic way to derive neural nets for vision problems. It 
involves formulating a vision problem as Bayesian inference or decision 
on a comprehensive model of the visual domain given by a probabilistic 
grammar. 

1 INTRODUCTION 

I show how systematically to derive optimizing neural networks that represent quan­
titative visual models and match them to data. This involves a design methodology 
which starts from first principles, namely a probabilistic model of a visual domain, 
and proceeds via Bayesian inference to a neural network which performs a visual 
task. The key problem is to find probability distributions sufficiently intricate to 
model general visual tasks and yet tractable enough for theory. This is achieved 
by probabilistic and expressive grammars which model the image-formation pro­
cess, including heterogeneous sources of noise each modelled with a grammar rule. 
In particular these grammars include a crucial "relabelling" rule that removes the 
undetectable internal labels (or indices) of detectable features and substitutes an 
uninformed labeling scheme used by the perceiver. 

This paper is a brief summary of the contents of [Mjolsness, 1991] . 
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Figure 1: Operation of random dot grammar. The first arrow illustrates dot place­
ment; the next shows dot jitter; the next arrow shows the pure, un-numbered fea­
ture locations; and the final arrow is the uninformed renumbering scheme of the 
perceIver. 

2 EXAMPLE: A RANDOM-DOT GRAMMAR 

The first example grammar is a generative model of pictures consisting of a number 
of dots (e.g. a sum of delta functions) whose relative locations are determined by 
one out of M stored models. But the dots are subject to unknown independent jitter 
and an unknown global translation, and the identities of the dots (their numerical 
labels) are hidden from the perceiver by a random permutation operation. For 
example each model might represent an imaginary asterism of equally bright stars 
whose locations have been corrupted by instrument noise. One useful task would 
be to recognize which model generated the image data. The random-dot grammar 
is shown in (1). 

model a.nd r O : root --+ insta.nce of model Cl' a.t x loca.tion 
Eo (x) - 1 IxI2 

20'~ 
dot r 1 : insta.nce (Cl', x) {dotloc(Cl', m, xm = X + u~)} loca.tions 

--+ 

El({Xm}) - -log TIm 6(xm - x - u~), 
where < u~ >m=O 

~ lim0'6-0 ~ E IXm - x - U~12 + C(0'6) 0'6 m 
dot r 2 : dotloc( Cl', m, Xm) dot(m,xm} jitter --+ 

E2(Xm) 1 1 ~ 12 - ~ Xm-Xm 0' il 
scra.mble r 3 : {dot(m, Xm)} --+ {ima.gedot(xi = Em Pm,iXm)} all dots 

E3({xd) - -log [Pr(P) TIi 6(Xi - Em Pm,iXm)] 
where P is a. permuta.tion 

~~ 
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The final joint probability distribution for this grammar allows recognition and 
other problems to be posed as Bayesian inference and solved by neural network 
optimization of 

A sum over all permutations has been approximated by the optimization over near­
permutations, as usual for Mean Field Theory networks [Yuille, 1990], resulting in 
a neural network implementable as an analog circuit. The fact that P appears 
only linearly in Efinal makes the optimization problems easier; it is a generalized 
"assignment" problem. 

2.1 APPROXIMATE NEURAL NETWORK WITHOUT MATCH 
VARIABLES 

Short of approximating a P configuration sum via Mean Field Theory neural nets, 
there is a simpler, cheaper, less accurate approximation that we have used on match­
ing problems similar to the model recognition problem (find a and x) for the dot­
matching grammar. Under this approximation, 

} '" 1 (1 2 1 a 2) argmaxa,xIT(a,xl{xi ):::::: argmaxa,x L..,.exp -T 2N 21x l + --~ IXi - X - uml , 
. ~ 2u}t m,1 

(3) 
for T = 1. This objective function has a simple interpretation when U r ----+ 00: it 
minimizes the Euclidean distance between two Gaussian-blurred images containing 
the Xi dots and a shifted version of the Um dots respectively: 

argmina X J dz IG * II (z) - G * I2(z - x)1 2 
, 2 

argmina,x J dz IGo"/V2 * 2:i 8(z - Xi) - Gq / V2 * 2:m 8(z - X - u~)1 
argmina,x [C1 - 2 2:mi J dz exp -~ [Iz - xd2 + Iz - X - U~12]] 
argmaxa,x 2:mi exp - 2~2 IXi - X - U~ 12 

(4) 
Deterministic annealing from T = 00 down to T = 1, which is a good strategy for 
finding global maxima in equation (3), corresponds to a coarse-to-fine correlation 
matching algorithm: the global shift X is computed by repeated local optimization 
while gradually decreasing the Gaussian blurr parameter U down to Ujt. 

The approximation (3) has the effect of eliminating the discrete Pmi variables, rather 
than replacing them with continuous versions Vmi. The same can be said for the 
"elastic net" method [Durbin and Willshaw, 1987]. Compared to the elastic net, the 
present objective function is simpler, more symmetric between rows and columns, 
has a nicer interpretation in terms of known algorithms (correlation matching in 
scale space), and is expected to be less accurate. 



Visual Grammars and their Neural Nets 431 

3 EXPERIMENTS IN IMAGE REGISTRATION 

Equation (3) is an objective function for recovering the global two-dimensional (2D) 
translation of a model consisting of arbitrarily placed dots, to match up with sim­
ilar dots with jittered positions. We use it instead to find the best 2D rotation 
and horizontal translation, for two images which actually differ by a horizontal 
3D translation with roughly constant camera orientation. The images consist of 
line segments rather than single dots, some of which are missing or extra data. In 
addition, there are strong boundary effects due to parts of the scene being trans­
lated outside the camera's field of view. The jitter is replaced by whatever po­
sitional inaccuracies come from an actual camera producing an 128 x 128 image 
[Williams and Hanson, 1988] which is then processed by a high quality line-segment 
finding algorithm [Burns, 1986]. Better results would be expected of objective func­
tions derived from grammars which explicitly model more of these noise processes, 
such as the grammars described in Section 4. 

We experimented with minimizing this objective function with respect to unknown 
global translations and (sometimes) rotations, using the continuation method and 
sets of line segments derived from real images. The results are shown in Figures 2, 
3 and 4. 

4 MORE GRAMMARS 

Going beyond the random-dot grammar, we have studied several grammars of in­
creasing complexity. One can add rotation and dot deletion as new sources of noise, 
or introduce a two-level hierarchy, in which models are sets of clusters of dots. In 
[Mjolsness et al., 1991] we present a grammar for multiple curves in a single image, 
each of which is represented in the image as a set of dots that may be hard to 
group into their original curves. This grammar illustrates how flexible objects can 
be handled in our formalism. 

We approach a modest plateau of generality by augmenting the hierarchical version 
of the random-dot grammar with multiple objects in a single scene. This degree of 
complexity is sufficient to introduce many interesting features of knowledge repre­
sentation in high-level vision, such as multiple instances of a model in a scene, as 
well as requiring segmentation and grouping as part of the recognition process. We 
have shown [Mjolsness, 1991] that such a grammar can yield neural networks nearly 
identical to the "Frameville" neural networks we have previously studied as a means 
of mixing simple Artificial Intelligence frame systems (or semantic networks) with 
optimization-based neural networks. What is more, the transformation leading to 
Frameville is very natural. It simply pushes the permutation matrix as far back 
into the grammar as possible. 
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Figure 2: A simple image registration problem. (a) Stair image. (b) Long line 
segments derived from stair image. (c) Two unregistered line segment images de­
rived from two images taken from two horizontally translated viewpoints in three 
dimensions. The images are a pair of successive frames in an image sequence. (d) 
Registered viersions of same data: superposed long line segments extracted from 
two stair images (taken from viewpoints differing by a small horizontal translation 
in three dimensions) that have been optimally registered in two dimensions. 
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Figure 3: Continuation method (deterministic annealing). (a) Objective function at 
(j = .0863. (b) Objective function at (j = .300. (c) Objective function at (j = .105. 
(d) Objective function at (j = .0364. 
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Figure 4: Image sequence displacement recovery. Frame 2 is matched to frames 3-8 
in the stair image sequence. Horizontal displacements are recovered. Other starting 
frames yield similar results except for frame 1, which was much worse. (a) Horizon­
tal displacement recovered, assuming no 2-d rotation. Recovered dispacement as 
a function of frame number is monotonic. (b) Horizontal displacement recovered, 
along with 2-d rotation which is found to be small except for the final frame. Dis­
placements are in qualitative agreement with (a), more so for small displacements. 
(c) Objective function before and after displacement is recovered (upper and lower 
curves) without rotation. Note gradual decrease in dE with frame number (and 
hence with displacement). (d) Objective function before and after displacement is 
recovered (upper and lower curves) with rotation. 
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