
Refining PIn Controllers using Neural Networks

Gary M. Scott
Department of Chemical Engineering

1415 Johnson Drive
University of Wisconsin

Madison, WI 53706

Jude W. Shavlik
Department of Computer Sciences

1210 W. Dayton Street
University of Wisconsin

Madison, WI 53706

W. Harmon Ray
Department of Chemical Engineering

1415 Johnson Drive
University of Wisconsin

Madison, WI 53706

Abstract

The KBANN approach uses neural networks to refine knowledge that can
be written in the form of simple propositional rules. We extend this idea
further by presenting the MANNCON algorithm by which the mathematical
equations governing a PID controller determine the topology and initial
weights of a network, which is further trained using backpropagation. We
apply this method to the task of controlling the outflow and temperature
of a water tank, producing statistically-significant gains in accuracy over
both a standard neural network approach and a non-learning PID con­
troller. Furthermore, using the PID knowledge to initialize the weights of
the network produces statistically less variation in testset accuracy when
compared to networks initialized with small random numbers.

1 INTRODUCTION

Research into the design of neural networks for process control has largely ignored
existing knowledge about the task at hand. One form this knowledge (often called
the "domain theory") can take is embodied in traditional controller paradigms. The

555

556 Scott, Shavlik, and Ray

recently-developed KBANN (Knowledge-Based Artificial Neural Networks) approach
(Towell et al., 1990) addresses this issue for tasks for which a domain theory (written
using simple propositional rules) is available. The basis of this approach is to use
the existing knowledge to determine an appropriate network topology and initial
weights, such that the network begins its learning process at a "good" starting
point.

This paper describes the MANNCON (Multivariable Artificial Neural Network Con­
trol) algorithm, a method of using a traditional controller paradigm to determine
the topology and initial weights of a network . The used of a PID controller in this
way eliminates network-design problems such as the choice of network topology
(i.e., the number of hidden units) and reduces the sensitivity of the network to the
initial values of the weights. Furthermore, the initial configuration of the network
is closer to its final state than it would normally be in a randomly-configured net­
work. Thus, the MANNCON networks perform better and more consistently than
the standard, randomly-initialized three-layer approach.

The task we examine here is learning to control a Multiple-Input, Multiple-Output
(MIMO) system. There are a number of reasons to investigate this task using neu­
ral networks. One, it usually involves nonlinear input-output relationships, which
matches the nonlinear nature of neural networks. Two, there have been a number
of successful applications of neural networks to this task (Bhat & McAvoy, 1990;
Jordan & Jacobs, 1990; Miller et al., 1990). Finally, there are a number of existing
controller paradigms which can be used to determine the topology and the initial
weights of the network.

2 CONTROLLER NETWORKS

The MANNCON algorithm uses a Proportional-Integral-Derivative (PID) controller
(Stephanopoulos, 1984), one of the simplest of the traditional feedback controller
schemes, as the basis for the construction and initialization of a neural network con­
troller. The basic idea of PID control is that the control action u (a vector) should
be proportional to the error, the integral of the error over time, and the temporal
derivative of the error. Several tuning parameters determine the contribution of
these various components. Figure 1 depicts the resulting network topology based
on the PID controller paradigm. The first layer of the network, that from Y $P (de­
sired process output or setpoint) and Y(n-l) (actual process output of the past time
step), calculates the simple error (e). A simple vector difference,

e=Y$p-Y

accomplishes this. The second layer, that between e, e(n-l), and e, calculates the
actual error to be passed to the PID mechanism. In effect, this layer acts as a
steady-state pre-compensator (Ray, 1981), where

e = GIe

and produces the current error and the error signals at the past two time steps.
This compensator is a constant matrix, G I , with values such that interactions at a
steady state between the various control loops are eliminated. The final layer , that
between e and u(n) (controller output/plant input), calculates the controller action

Y(n-I)

t:(n-I)

Refining PID Controllers using Neural Networks 557

Fd

Td

den) Water F
Tank

WCO

WHO

WCI

WHI

WC2

WH2

T
Yen)

Figure 1: MANNCON network showing weights that are initialized using
Ziegler-Nichols tuning parameters.

based on the velocity form of the discrete PID controller:

UC(n) = UC(n-l) + WCOCI(n) + WCICI(n-l) + WC2 CI(n-2)

where Wca, wCb and WC2 are constants determined by the tuning parameters of the
controller for that loop. A similar set of equations and constants (WHO, WHI, WH2)

exist for the other controller loop.

Figure 2 shows a schematic of the water tank (Ray, 1981) that the network con­
trols. This figure also shows the controller variables (Fc and FH), the tank output
variables (F(h) and T), and the disturbance variables (Fd and Td). The controller
cannot measure the disturbances, which represent noise in the system.

MANN CON initializes the weights of Figure 1 's network with va.lues that mimic
the behavior of a PID controller tuned with Ziegler-Nichols (Z-N) parameters
(Stephanopoulos, 1984) at a particular operating condition. Using the KBANN

approach (Towell et al., 1990), it adds weights to the network such that all units
in a layer are connected to all units in all subsequent layers, and initializes these
weights to small random numbers several orders of magnitude smaller than the
weights determined by the PID parameters. We scaled the inputs and outputs of
the network to be in the range [0,1].

Initializing the weights of the network in the manner given above assumes that the
activation functions of the units in the network are linear, that is,

558 Scott, Shavlik, and Ray

Cold Stream
Fe

Hot Stream (at TH)

~
Dis t urban ce

Fd,Td

T = Temperature
F = Flow Rate

I-

I I I

I-

h l-

Output
F(h), T

Figure 2: Stirred mixing tank requiring outflow and temperature control.

Table 1: Topology and initialization of networks.

Network Topology Weight Initialization
1. Standard neural network 3-layer (14 hidden units) random
2. MANNCON network I PID topology random
3. MANNCON network II PID topology Z-N tuning

The strength of neural networks, however, lie in their having nonlinear (typically
sigmoidal) activation functions. For this reason, the MANNCON system initially sets
the weights (and the biases of the units) so that the linear response dictated by the
PID initialization is approximated by a sigmoid over the output range of the unit.
For units that have outputs in the range [-1,1]' the activation function becomes

2 _ 1
1 + exp(-2.31 L WjiOi)

where Wji are the linear weights described above.

Once MANNCON configures and initializes the weights of the network, it uses a set
of training examples and backpropagation to improve the accuracy of the network.
The weights initialized with PID information, as well as those initialized with small
random numbers, change during backpropagation training.

3 EXPERIMENTAL DETAILS

We compared the performance of three networks that differed in their topology
and/or their method of initialization. Table 1 summarizes the network topology
and weight initialization method for each network. In this table, "PID topology"
is the network structure shown in Figure 1. "Random" weight initialization sets

Refining PID Controllers using Neural Networks 559

Table 2: Range and average duration of setpoints for experiments.

Experiment Training Set Testing Set
1 [0.1,0.9] [0.1,0.9]

22 instances 22 instances
2 [0.1,0.9] [0.1,0.9]

22 instances 80 instances
3 [0.4,0.6] [0.1,0.9]

22 instances 80 instances

all weights to small random numbers centered around zero. We also compare these
networks to a (non-learning) PID controller.

We trained the networks using backpropagation over a randomly-determined sched­
ule of setpoint YsP and disturbance d changes that did not repeat. The setpoints,
which represent the desired output values that the controller is to maintain, are the
temperature and outflow of the tank. The disturbances, which represent noise, are
the inflow rate and temperature of a disturbance stream. The magnitudes of the
setpoints and the disturbances formed a Gaussian distribution centered at 0.5. The
number of training examples between changes in the setpoints and disturbances
were exponentially distributed.

We performed three experiments in which the characteristics of the training and/or
testing set differed. Table 2 summarizes the range of the setpoints as well as their
average duration for each data set in the experiments. As can be seen, in Experiment
1, the training set and testing sets were qualitatively similar; in Experiment 2, the
test set was of longer duration setpoints; and in Experiment 3, the training set was
restricted to a subrange of the testing set. We periodically interrupted training and
tested the network . Results are averaged over 10 runs (Scott, 1991).

We used the error at the output of the tank (y in Figure 1) to determine the network
error (at u) by propagating the error backward through the plant (Psaltis et al.,
1988). In this method, the error signal at the input to the tank is given by

f '() ~ °Yi 8u i = netui ~ 8y j OUi

J

where 8yj represents the simple error at the output of the water tank and 8ui is the
error signal at the input of the tank . Since we used a model of the process and not a
real tank, we can calculate the partial derivatives from the process model equations.

4 RESULTS

Figure 3 compares the performance of the three networks for Experiment 1. As can
be seen, the MANNCON networks show an increase in correctness over the standard
neural network approach. Statistical analysis of the errors using a t-test show
that they differ significantly at the 99.5% confidence level. Furthermore, while the
difference in performance between MANNCON network I and MANNCON network II is

560 Scott, Shavlik, and Ray

l~---,
1 = Standard neural network
2 = MANNCON network I
3 = MANN CON network II
4 = PID controller (non-learning)

10000 15000 20000 25000 30000

Training Instances

Figure 3: Mean square error of networks on the testset as a function of
the number of training instances presented for Experiment 1.

not significant, the difference in the variance of the testing error over different runs
is significant (99.5% confidence level). Finally, the MANNCON networks perform
significantly better (99.95% confidence level) than the non-learning PID controller.
The performance of the standard neural network represents the best of several trials
with a varying number of hidden units ranging from 2 to 20.

A second observation from Figure 3 is that the MANNCON networks learned much
more quickly than the standard neural-network approach. The MANNCON networks
required significantly fewer training instances to reach a performance level within
5% of its final error rate. For each of the experiments, Table 3 summarizes the
final mean error, as well as the number of training instances required to achieve a
performance within 5% of this value.

In Experiments 2 and 3 we again see a significant gain in correctness of the MAN­

NCON networks over both the standard neural network approach (99.95% confidence
level) as well as the non-learning PID controller (99.95% confidence level). In these
experiments, the MANNCON network initialized with Z-N tuning also learned sig­
nificantly quicker (99.95% confidence level) than the standard neural network.

5 FUTURE WORK

One question is whether the introduction of extra hidden units into the network
would improve the performance by giving the network "room" to learn concepts
that are outside the given domain theory. The addition of extra hidden units as
well as the removal of unneeded units is an area with much ongoing research.

Refining PID Controllers using Neural Networks 561

Table 3: Comparison of network performance.
Method I Mean Square Error I Training Instances

Experiment 1
l. Standard neural network 0.0103 ± 0.0004 25,200 ± 2, 260
2. MANN CON network I 0.0090 ± 0.0006 5,000 ± 3,340
3. MANN CON network II 0.0086 ± 0.0001 640± 200
4. PID control (Z-N tuning) 0.0109
5. Fixed control action 0.0190

Experiment 2
l. Standard neural network 0.0118 ± 0.00158 14,400 ± 3, 150
2. MANN CON network I 0.0040 ± 0.00014 12 , 000 ± 3,690
3. MANN CON network II 0.0038 ± 0.00006 2,080± 300
4. PID control (Z-N tuning) 0.0045
5. Fixed con trol action 0.0181

Experiment 3
l. Standard neural network 0.0112 ± 0.00013 25,200 ± 2, 360
2. MANN CON network I 0.0039 ± 0.00008 25,000 ± 1, 550
3. MANN CON network II 0.0036 ± 0.00006 9,400 ± 1,180
4. PID control (Z-N tuning) 0.0045
5. Fixed control action 0.0181

The "±" indicates that the true value lies within these bounds at a 95%
confidence level. The values given for fixed control action (5) represent
the errors resulting from fixing the control actions at a level that produces
outputs of [0.5,0.5) at steady state.

"Ringing" (rapid changes in controller actions) occurred in some of the trained
networks . A future enhancement of this approach would be to create a network
architecture that prevented this ringing, perhaps by limiting the changes in the
controller actions to some relatively small values.

Another important goal of this approach is the application of it to other real-world
processes. The water tank in this project, while illustrative of the approach , was
quite simple. Much more difficult problems (such as those containing significant
time delays) exist and should be explored.

There are several other controller paradigms that could be used as a basis for net­
work construction and initialization. There are several different digital controllers,
such as Deadbeat or Dahlin's (Stephanopoulos, 1984), that could be used in place
of the digital PID controller used in this project. Dynamic Matrix Control (DMC)
(Pratt et al., 1980) and Internal Model Control (IMC) (Garcia & Morari, 1982) are
also candidates for consideration for this approach.

Finally, neural networks are generally considered to be "black boxes," in that their
inner workings are completely uninterpretable. Since the neural networks in this
approach are initialized with information, it may be possible to interpret the weights
of the network and extract useful information from the trained network.

562 Scott, Shavlik, and Ray

6 CONCLUSIONS

We have described the MANNCON algorithm, which uses the information from a
PID controller to determine a relevant network topology without resorting to trial­
and-error methods. In addition, the algorithm, through initialization of the weights
with prior knowledge, gives the backpropagtion algorithm an appropriate direction
in which to continue learning. Finally, we have shown that using the MANNCON
algorithm significantly improves the performance of the trained network in the fol­
lowing ways:

• Improved mean testset accuracy

• Less variability between runs

• Faster rate of learning

• Better generalization and extrapolation ability

Acknowledgements

This material based upon work partially supported under a National Science Foun­
dation Graduate Fellowship (to Scott), Office of Naval Research Grant N00014-90-
J-1941, and National Science Foundation Grants IRI-9002413 and CPT-8715051.

References

Bhat, N. & McAvoy, T. J. (1990). Use of neural nets for dynamic modeling and
control of chemical process systems. Computers and Chemical Engineering, 14,
573-583.

Garcia, C. E. & Morari, M. (1982). Internal model control: 1. A unifying review
and some new results . I&EC Process Design & Development, 21, 308-323.

Jordan, M. I. & Jacobs, R. A. (1990). Learning to control an unstable system
with forward modeling. In Advances in Neural Information Processing Systems
(Vol. 2, pp. 325- 331). San Mateo, CA: Morgan Kaufmann.

Miller, W. T., Sutton, R. S., & Werbos, P. J. (Eds.)(1990). Neural networks for
control. Cambridge, MA : MIT Press.

Pratt, D. M., Ramaker, B. L., & Cutler, C. R. (1980) . Dynamic matrix control
method. Patent 4,349,869, Shell Oil Company.

Psaltis, D., Sideris, A., & Yamamura, A. A. (1988). A multilayered neural network
controller. IEEE Control Systems Magazine, 8, 17- 21.

Ray, W . H. (1981). Advanced process control. New York: McGraw-Hill, Inc.

Scott, G. M. (1991). Refining PID controllers using neural networks. Master's
project, University of Wisconsin, Department of Computer Sciences.

Stephanopoulos, G. (1984). Chemical process control: An introduction to theory
and practice. Englewood Cliffs, NJ: Prentice Hall, Inc.

Towell, G., Shavlik, J., & Noordewier, M. (1990). Refinement of approximate do­
main theories by knowledge-base neural networks. In Eighth National Confer­
ence on Aritificial Intelligence (pp. 861-866). Menlo Park, CA: AAAI Press .

