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Issues relating to the estimation of hidden Markov model (HMM) local 
probabilities are discussed. In particular we note the isomorphism of ra­
dial basis functions (RBF) networks to tied mixture density modellingj 
additionally we highlight the differences between these methods arising 
from the different training criteria employed. We present a method in 
which connectionist training can be modified to resolve these differences 
and discuss some preliminary experiments. Finally, we discuss some out­
standing problems with discriminative training. 

1 INTRODUCTION 

In a statistical approach to continuous speech recognition the desired quantity is 
the posterior probability p(Wrlxf, 8) of a word sequence Wr = Wl ..... Ww given 
the acoustic evidence X[ = Xl ..... XT and the parameters of the speech model used 
8. Typically a set of models is used, to separately model different units of speech. 
This probability may be re-expressed using Bayes' rule: 

(1) P(WwIXT 8) = p(XflW r.8)p(WrI8) 
1 l' p(Xn8) 

p(Xflwr. 8)p(Wr 18) 
= Lw' p(XnW'. 8)P(W'18) . 

p(XnWr.8)/p(Xn8) is the acoustic model. This is the ratio of the likelihood 
of the acoustic evidence given the sequence of word models, to the probability of 
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the acoustic data being generated by the complete set of models. p(Xn8) may be 
regarded as a normalising term that is constant (across models) at recognition time. 
However at training time the parameters 8 are being adapted, thus p(Xn8) is no 
longer constant. The prior, P(WfI8), is obtained from a language model. 

The basic unit of speech, typically smaller than a word (here we use phones), is 
modelled by a hidden Markov model (HMM). Word models consist of concate­
nations of phone HMMs (constrained by pronunciations stored in a lexicon), and 
sentence models consist of concatenations of word HMMs (constrained by a gram­
mar). The lexicon and grammar together make up a language model, specifying 
prior probabilities for sentences, words and phones. 

A HMM is a stochastic automaton defined by a set of states qi, a topology specify­
ing allowed state transitions and a set oflocal probability density functions (PDFs) 
P(x" qilqj. X~-l). Making the further assumptions that the output at time t is inde­
pendent of previous outputs and depends only on the current state, we may separate 
the local probabilities into state transition probabilities P(q;lqj) and output PDFs 
P(X,lqi). A set of initial state probabilities must also be specified. 

The parameters of a HMM are usually set via a maximum likelihood procedure that 
optimally estimates the joint density P(q, xI8). The forward-backward algorithm, a 
provably convergent algorithm for this task, is extremely efficient in practice. How­
ever, in speech recognition we do not wish to make the best model of the data {x, q} 
given the model parameters; we want to make the optimal discrimination between 
classes at each time. This can be better achieved by computing a discriminant 
P(qlx, 8). Note that in this case we do not model the input density P(xI8). 

We may estimate P(qlx.8) using a feed-forward network trained to an entropy 
criterion (Bourlard & Wellekens, 1989). However, we require likelihoods of the form 
P(xlq, 8), as HMM output probabilities. We may convert posterior probabilities to 
scaled likelihoods P(xlq, 8)IP(xI8), by dividing the network outputs by the relative 
frequencies of each class1. Note that we are not using connectionist training to 
obtain density estimates here; we are obtaining a ratio and not modelling P(xI8). 
This ratio is the quantity that we wish to maximise: this corresponds to maximising 
P(xlqc.8) and minimising P(Xlqi. 8). i =I c, where qc is the correct class. We have 
used discriminatively trained networks to estimate the output PDFs (Bourlard & 
Morgan, 1991; Renals et al., 1991, 1992), and have obtained superior results to 
maximum likelihood training on continuous speech recognition tasks. 

In this paper, we are mainly concerned with radial basis function (RBF) networks. 
A RBF network generally has a single hidden layer, whose units may be regarded 
as computing local (or approximately local) densities, rather than global decision 
surfaces. The resultant posteriors are obtained by output units that combine these 
local densities. We are interested in using RBF networks for various reasons: 

• A RBF network is isomorphic to a tied mixture density model, although the 
training criterion is typically different. The relationship between the two is 
explored in this paper . 

• The locality of RBFs makes them suitable for situations in which the input 

ITbese are the estimates of P(qi) implicitly used during classifier training. 
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distribution may change (e.g. speaker adaptation). Surplus RBFs in a region 
of the input space where data no longer occurs will not effect the final classi­
fication. This is not so for sigmoidal hidden units in a multi-layer perceptron 
(MLP), which have a global effect. 

• RBFs are potentially more computationally efficient than MLPs at both train­
ing and recognition time. 

2 TIED MIXTURE HMM 

Tied mixtures of Gaussians have proven to be powerful PDF estimators in HMM 
speech recognition systems (Huang & Jack, 1989; Bellegarda & Nahamoo, 1990). 
The resulting systems are also known as semi-continuous HMMs. Tied mixture 
density estimation may be regarded as an interpolation between discrete and con­
tinuous density modelling Essentially, tied mixture modelling has a single "code­
book" of Gaussians shared by all output PDFs. Each of these PDFs has its own 
set of mixture coefficients used to combine the individual Gaussians. If h(xlqk) is 
the output PDF of state qk, and Nj (xlJ1j. ~j) are the component Gaussians, then: 

(2) h(xlqk. 8 ) = I: akjNj (xlJ1jo ~j) 
j 

1:akj = 1 
j 

where akj is an element of the matrix of mixture coefficients (which may be inter­
preted as the prior probability P(Pj. l:jlqk») defining how much component density 
Nj(xlJ1jt ~j) contributes to output PDF h(xlqk.8). Alternatively this may be re­
garded as "fuzzy" vector quantisation. 

3 RADIAL BASIS FUNCTIONS 

The radial basis functions (RBF) network was originally introduced as a means 
of function interpolation (Powell, 1985; Broomhead & Lowe, 1988). A set of K 
approximating functions, hex) is constructed from a set of J basis functions cp(x): 

(3) 
J 

fk(X) = 1: akjcpj(x) 
j=l 

This equation defines a RBF network with J RBFs (hidden units) and K outputs . 
The output units here are linear, with weights akj. The RBFs are typically Gaus­
sians, with means Ilj and covariance matrices ~r 

(4) 

where R is a normalising constant . The covariance matrix is frequently assumed to 
be diagonal2• 

1bis is often reasonable for speech applications. since mel or PLP cepstral coefficients are 
orthogonal. 
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Such a network has been used for HMM output probability estimation in contin­
uous speech recognition (Renals et al., 1991) and an isomorphism to tied-mixture 
HMMs was noted. However, there is a mismatch between the posterior probabilities 
estimated by the network and the likelihoods required for the HMM decoding. Pre­
viously this was resolved by dividing the outputs by the relative frequencies of each 
state. It would be desirable, though, to retain the isomorphism to tied mixtures: 
specifically we wish to interpret the hidden-to-output weights of an RBF network as 
the mixture coefficients of a tied mixture likelihood function. This can be achieved 
by defining the transfer units of the output units to implement Bayes' rule, which 
relates the posterior gk{X) to the likelihood !k(x): 

(5) 

Such a transfer function ensures the output units sum to 1; if fA:{x) is guaranteed 
non-negative, then the outputs are formally probabilities. The output of such a 
network is a probability distribution and we are using 'l-from-K' training: thus the 
relative entropy E is simply: 

(6) E == -loggc(x). 

where qc is the desired output class (HMM distribution). Bridle (1990) has demon­
strated that minimising this error function is equivalent to maximising the mutual 
information between the acoustic evidence and HMM state sequence. 

If we wish to interpret the weights as mixture coefficients, then we must ensure 
that they are non-negative and sum to 1. This may be achieved us'ing a normalised 
exponential (softmax) transformation: 

(7) 

The mixture coefficients akj are used to compute the likelihood estimates, but it is 
the derived variables wkj that are used in the unconstrained optimisation. 

3.1 TRAINING 

Steepest descent training specifies that: 

(8) 

Here E is the relative entropy objective function (6). We may decompose the right 
hand side of this by a careful application of the chain rule of differentiation: 

(9) 
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We may write down expressions for each of these partials (where ~ab is the Kronecker 
delta and qc is the desired state): 

(10) 

(11) 

(12) 

(13) 

dE ~c' --=--
dg,(X) gc 

dg,(X) = gA;(X) (~ _ g,) 
d!A:(X) !A: (x) 

dfA;(X) () 
-- =tPli x 
daU 
dau - = aU(~IIj - alcj). 
dWIcj 

Substituting (10), (11), (12) and (13) into (9) we obtain: 

(14) 
dE 1 

dwlcj = fA;(X) (gA;(X) - ~A:c) alcj (tPj(x) - !A: (x) ) . 

Apart from the added terms due to the normalisation of the weights, the major dif­
ference in the gradient compared with using a sigmoid or softmax transfer function 
is the 1/!A:(x) factor. To some extent we may regard this as a dimensional term. 

The required gradient is simpler if we construct the network to estimate log likeli­
hoods, replacing fA;(X) with ZA;(X) = logfA;(x): 

(15) ZA;(X) = L wkj'tPj(x) 
j 

(16) gA;(X) = p(qA;) exp(zA;(x» . 
2:, p(q,) exp(z,(x» 

Since this is in the log domain, no constraints on the weights are required. The new 
gradient we need is: 

(17) 

Thus the gradient of the error is: 

dE 
(18) -;- = (gA;(X) - ~d) tPj(x). 

aWIcj 

Since we are in log domain, the lI!A:(x) factor is additive and thus disappears from 
the gradient. This network is similar to Bridle's softmax, except here uniform priors 
are not assumed; the gradient is of identical form, though. In this case the weights 
do not have a simple relationship with the mixture coefficients obtained in tied 
mixture density modelling. 

We may also train the means and variances of the RBFs by back-propagation of 
error; the gradients are straightforward. 

3.2 PRELIMINARY EXPERIMENTS 

We have experimented with both the Bayes' rule transfer function (5) and the 
variant in the log domain (16). We used a phoneme classification task, with a 
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database consisting of 160,000 frames of continuous speech. We typically computed 
the parameters of the RBFs by a k-means clustering process. We found that the 
gradient resulting from the first transfer function (14) had a tendency to numerical 
instability, due to the lIJ term; thus most of our experiments have used the log 
domain transfer function. 

In experiments using a 1000 RBFs, we have obtained frame classification ra.tes of 
52%. This is somewhat poorer than the frame classification we obtain using 80512 
hidden unit MLP (59%) . We are investigating improvements to our procedure, 
including variations to the learning schedule, the use of the EM algorithm to set 
RBF parameters and the use of priors on the weight matrix. 

4 PROBLEMS WITH DISCRIMINATIVE TRAINING 

4.1 UNLABELLED DATA 

A problem arises from the use of unlabelled or partially labelled data. When training 
a speech recogniser, we typically know the word sequence for an utterance, but we 
do not have a time-aligned phonetic transcription. This is a case of partially labelled 
data: a training set of data pairs {x"qt} is unavailable, but we do not have purely 
unlabelled data {Xt}. Instea.d, we have the constraining information of the word 
sequence W . Thus P(qilxt) may be decomposed as: 

(19) 

We usually make the further approximation that the optimal state sequence is 
much more likely than any competing state sequence. Thus, P(qclxt) = 1, and the 
probabilities of all other states at time tare O. This most likely state sequence (which 
may be computed using a forced Viterbi alignment) is often used as the desired 
outputs for a discriminatively trained network. Using this alignment implicitly 
assumes model correctness; however, we use discriminative training because we 
believe the HMMs are an inadequate speech model. Hence there is a mismatch 
between the maximum likelihood labelling and alignment, and the discriminative 
training used for the networks. 

It may be that this mismatch is responsible for the lack of robustness of discrim­
inative training (compared with pure maximum likelihood training) in vocabulary 
independent speech recognition tasks (Paul et al., 1991). The assumption of model 
correctness used to generate the labels may have the effect of further embedding 
specifics of the training data into the final models. A solution to this problem 
may be to use a probabilistic alignment, with a distribution over labels at each 
timestep. This could be computed using the forward-backward algorithm, rather 
than the Viterbi approximation. This maximum likelihood approach still assumes 
model correctness of course. A discriminative approach to this problem would also 
attempt to infer distributions over labels. A basic goal might be to sharpen the dis­
tribution toward the maximum likelihood estimate. An example of such a method 
is the 'phantom targets' algorithm introduced by Bridle & Cox (1991). 

These optimisations are local: the error is not propagated through time. Algorithms 
for globally optimising discriminative training have been proposed (e.g. Bengio et 
al., these proceedings), but are not without problems, when used with a constrain-
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ing language model. The problem is that to compute the posterior, the ratio of 
the probabilities of generating the correct utterance and generating all allowable 
utterances must be computed. 

4.2 THE PRIORS 

It has been shown, both theoretically and in practice, that the training and recogni­
tion procedures used with standard HMMs remain valid for posterior probabilities 
(Bourlard & Wellekens, 1989). Why then do we replace these posterior probabilities 
with likelihoods? 

The answer to this problem lies in a mismatch between the prior probabilities given 
by the training data and those imposed by the topology of the HMMs. Choosing the 
HMM topology also amounts to fixing the priors. For instance, if classes qA: represent 
phones, prior probabilitiesP(qk) are fixed when word models are defined as particular 
sequences of phone models. This discussion can be extended to different levels of 
processing: if qk represents sub-phonemic states and recognition is constrained by a 
language model, prior probabilities qk are fixed by (and can be calculated from) the 
phone models, word models and the language model. Ideally, the topologies of these 
models would be inferred directly from the training data, by using a discriminative 
criterion which implicitly contains the priors. Here, at least in theory, it would 
be possible to start from fully-connected models and to determine their topology 
according to the priors observed on the training data. Unfortunately this results in 
a huge number of parameters that would require an unrealistic amount of training 
data to estimate them significantly. This problem has also been raised in the context 
of language modelling (Paul et aI., 1991). 

Since the ideal theoretical solution is not accessible in practice, it is usually better to 
dispose of the poor estimate of the priors obtained using the training data, replacing 
them with "prior" phonological or syntactic knowledge. 

5 CONCLUSION 

Having discussed the similarities and differences between RBF networks and tied 
mixture density estimators, we present a method that attempts to resolve a mis­
match between discriminative training and density estimation. Some preliminary 
experiments relating to this approach were discussed; we are currently performing 
further speech recognition experiments using these methods. Finally we raised some 
important issues pertaining to discriminative training. 
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