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Abstract 

A constructive algorithm is proposed for feed-forward neural networks, 
which uses node-splitting in the hidden layers to build large networks from 
smaller ones. The small network forms an approximate model of a set of 
training data, and the split creates a larger more powerful network which is 
initialised with the approximate solution already found. The insufficiency 
of the smaller network in modelling the system which generated the data 
leads to oscillation in those hidden nodes whose weight vectors cover re­
gions in the input space where more detail is required in the model. These 
nodes are identified and split in two using principal component analysis, 
allowing the new nodes t.o cover the two main modes of each oscillating 
vector. Nodes are selected for splitting using principal component analysis 
on the oscillating weight vectors, or by examining the Hessian matrix of 
second derivatives of the network error with respect to the weight.s. The 
second derivat.ive method can also be applied to the input layer, where it 
provides a useful indication of t.he relative import.ances of parameters for 
the classification t.ask. Node splitting in a standard Multi Layer Percep­
t.ron is equivalent to introducing a hinge in the decision boundary to allow 
more detail to be learned. Initial results were promising, but further eval­
uation indicates that the long range effects of decision boundaries cause 
the new nodes to slip back to the old node position, and nothing is gained. 
This problem does not occur in networks of localised receptive fields such 
as radial basis functions or gaussian mixtures, where the t.echnique appears 
to work well. 
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1 Introduction 

To achieve good generalisation in neural networks and other techniques for inferring 
a model from data, we aim to match the number of degrees of freedom of the model 
to that of the system generating the data. With too small a model we learn an 
incomplete solution, while too many free parameters capture individual training 
samples and noise. 

Since the optimum size of network is seldom known in advance, there are two alter­
native ways of finding it. The constructive algorithm aims to build an approximate 
model, and then add new nodes to learn more detail, thereby approaching the op­
timum network size from below. Pruning algorithms, on the other hand, start with 
a network which is known to be too big, and then cut out nodes or weights which 
do not contribute to the model. A review of recent techniques [\VJ91a] has led the 
author to favour the constructive approach, since pruning still requires an estimate 
of the optimum size, and the initial large net.works can take a long time t.o train. 
Constructive algorithms offer fast training of the initial small networks, with the 
network size and training slowness reflecting the amount of information already 
learned. The best approach of all would be a constructive algorithm which also 
allowed the pruning of unnecessary nodes or weights from the net.work. 

The constructive algorithm trains a net.work until no further detail of the training 
data can be learned, and then adds new nodes to t.he network. New nodes can be 
added with random weights, or with pre-determined weight.s. Random weights are 
likely to disrupt the approximate solut.ion already found, and are unlikely to be 
initially placed in parts of the weight space where they can learn something useful, 
although encouraging results have been reported in t.his ar~a.[Ash89] This problem 
is likely to be accentuated in higher dimensional spaces. Alt.ernatively, weights can 
be pre-determined by measurements on the performance of the seed network, and 
this is the approach adopted here. One node is turned into two, each wit.h half the 
output weight. A divergence is introduced in the weights into the nodes which is 
sufficient for them behave independently in future training without disrupting the 
approximate solution already found. 

2 Node-Splitting 

A network is trained using standard techniques until no furt.her improvement on 
training set performance is achieved. Since we begin with a small network, we have 
an approximate model of the data, which captures the dominant properties of the 
generating system but lacks detail. We now freeze the weight.s in the network, and 
calculate the updates which would be made them, using simple gradient descent, 
by each separate t.raining pattern. Figure 1 shows t.he frozen vector of weights into 
a single hidden node, and the scatter of proposed updates around the equilibrium 
posit.ion. 

The picture shows the case of a hidden node where there is one clear direction 
of oscillation. This might be caused by two clusters of data within a class, each 
trying to use the node in its own area of the input space, or by a decision boundary 
pulled clockwise by some patterns and anti clockwise by others. If the oscillation 
is strong, either in its exhibition of a clear direction or in comparison with other 
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Figure 1: A hidden node weight vector and updates proposed hy individual t.raining 
patterns 

nodes in the same layer, then the node is split in two. The new nodes are placed 
one standard deviation either side of the old position. \Vhile this divergence gives 
the nodes a push in the right direction, allowing them t.o continue to diverge in later 
t.raining, the overall effect on the network is small. In most cases t.here is very little 
degradation in performance as a result of the split. 

The direction and size of oscillation are calculated by principal component anal­
ysis of the weight updates. By a traditional method, we are required to make a 
cova.riance matrix of the weight updat.es for the weight vector int.o each node: 

c = L6w6wT (1) 
p 

where p is the number of patterns. The mat.rix is then decomposed to a set of eigen­
values and eigenvectors; the largest. eigenvalue is the variance of oscillation and the 
corresponding eigenvector is it.s direction. Suitable techniques for performing this 
decomposition include Singular Value Dewmposition and Householder Reduction. 
[Vet86] A much more suit.able way of calculating the principal components of a 
stream of continuous measurements such as weight updat.es is iterative est.imation. 
An est.imate is stored for each required principal component. vector, and the esti­
mat.es are updated using each sample. [Oja83, San89] By Oja's method, the scalar 
product of t.he current sample vector wit.h each current est.imate of the eigenvectors 
is used as a mat.ching coefficient., M. The matching coefficient is used to re-estima.te 
the eigenvalues and eigenvectors, in conjunction wit.h a gain term). which decays 
as the number of patterns seen increases. The eigenvectors are updated by a pro­
portion )'M of the current sample, and t.he eigenvalues hy ).lU 2. The trace (sum of 
eigenvalues) can also be est.imated simply as the mean of the traces (sum of diagonal 
elements) of t.he individual sample covariance mat.rices. The principal component 
vectors are renormalised and orthogonalised after every few updat.es. This algorithm 
is of order n, the number of eigenvalues required, for the re-estimation, and O(n2) 
for the orthogonalisation; the matrix decomposition method can take exponential 
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time, and is always much slower in practice. 

In a recent paper on At eiosis Networks, Hanson introduced stochastic weights in the 
multi layer perceptron, with the aim of avoiding local minima in training.[Han90] 
A sample was taken from a gaussian distribution each time a weight was used; 
the mean was updated by gradient descent, and the variance reflected the network 
convergence. The variance was allowed to decay with time, so that the network 
would approach a deterministic state, but was increased in proportion to the updates 
made to the mean. \Vhile the network wa.g far from convergence these updates were 
large, and the variance remained large. Node splitting wa.g implemented in this 
system, in nodes where the variances on the weights were large compared with the 
means. In such cases, two new nodes were created with the weights one standard 
deviation either side of the old mean: one SD is added to all weights to one node, 
and subtracted for all weights to the other. Preliminary results were promising, but 
there appear to be two problems with this approach for node-splitting. First, the 
splitting criterion is not good: a useless node with all weights close to zero could 
have comparatively large variances on the weights owing to noise. This node would 
be split indefinit.ely. Secondly and more interestingly, the split is made wit.hout 
regard to the correlations in sign between the weight updates, shown as dots in the 
scatter plot.s of figure 2. In figure 2a, Meiosis would correctly place new nodes in the 
positions marked with crosses, while in figure 2b, the new nodes would he placed 
in completely the wrong places. This problem does not occur in the node splitting 
scheme based on principal component analysis. 

(a) (b) 
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Figure 2: Meiosis networks split correctly if the weight. updates are correlated in 
sign (a), but fail when they are not (b). 

3 Selecting nodes for splitting 

N ode splitting is carried out in t.he direct.ion of maximum variance of the scatter plot 
of weight updates proposed by individual training samples. The hidden layer nodes 
most likely t.o benefit from splitting are those for which the non-spherical nature 
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of the scatter plot is most pronounced. In later implementations this criterion was 
measured by comparing the largest eigenvalue with the sum of the eigenvalues, 
both these quantities being calculated by the iterative method. This is less simple 
in cases where there are a number of dominant directions of variance; the scatter 
plot might, for example be a four dimensional disk in a ten dimensional space, and 
hence present the possibility of splitt.ing one node into eight. It is hoped that these 
more complicat.ed splits will be the suhject of further research. 

An alternative approach in determining the need of nodes to be split, in comparison 
with other nodes in the same layer, is to use the second derivat.ives of t.he network 
error with respect to a parameter of the nodes which is normalised across all nodes 
in a given layer of the network. Such a parameter wa.c;; proposed by Mozer and 
Smolensky in [Sm089]: a multiplicative gat.ing function is applied to the outputs of 
the nodes, with its gating parameter set to one. Small incrempnt.s in this parameter 
can be used to characterise the error surface around the unity value, with the result 
that derivatives are normalised a.cross all nodes in a given layer of the network. 
Mozer and Smolensky rpplaced the sum squared error crit.erion with a modulus er­
ror criterion to preserve non-zero gradients close to the local minimum reached in 
training; we prefer to characterise the t.rue error surface by mpans of second deriva­
t.ives, which can be calculated by repeated use of the chain rule (hackpropagat.ion). 
Backpropagat.ion of second derivat.ivps has previously been rpport.ed in [So190] and 
[Hea90]. 

Since a high curvat.ure error minimum in t.he space of t.he gat.ing parampt.er for a 
particular nocie indicat.es st.eep gradipnt.s surrounding thp minimum, it is t.hese nodes 
which exhibit. t.he great.est instability in their weight-space position. In t.he weight 
space, if the curvat.ure is high only in cert.ain directions, we have the situat.ion in 
figure 1, where the node is oscillating, and is in need of splitt.ing. If the curvature is 
high in all directions in comparison with other nodes, the network is highly sensitive 
to changes in t.he node or it.s weights, and again it will benefit from splitting. 

At t.he ot.her end of the scale of curvat.ure sensitivity, a node or weight wit.h very low 
curvat.ure is one to which t.he network error is quit.e insensit.ive, and the parameter 
is a suitable candidate for pruning. This scheme has previously been used for weight 
pruning by Le Cun, Denker et a1. [SoW 0] , and offers the pot.ential for an int.egrated 
syst.em of splitting and pruning - a truly adapt.ive net.work archit.ecture. 

3.1 Applying the sensitivity measnre to inpnt nodes 

In a.ddit.ion to using t.he ga.ting parameter sensit.ivit.y to select nodes for pruning, 
Mozer and Smolensky mention the possibility of using it on the input nodes to 
indicate those inputs to which the c1a.<;sification is most sensitive. This has been 
implemented in our syst.em wit.h the second derivat.ive sensitivity measure, and ap­
plied to a large financial classification prohlem supplied by THORN El\JI Research. 
The analysis was carried out. on the 78-dimensional dat.a, and the input sensitivities 
varied over several orders of magnit.ude. The inputs were grouped into four sets ac­
cording to sensitivit.y, and MLPs of 10 hidden nodes were trained on each subset of 
the dat.a. \Vhile the low sensitivit.y groups failed to learn anyt.hing at all, t.he higher 
sensit.ivit.y groups quickly attained a reasonable classification rat.e. Ident.ification of 
useless inputs leads t.o greatly increased training speed in fut.ure analysis, and can 
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yield valuable economies in future data collection. This work is reported in more 
detail in [WJ91b]. 

4 Evaluation in Multi Layer Percept ron networks 

Despite the promising results from initial evaluations, further testing showed that 
the splitter technique was often unable to improve on the performance of the net­
work used as a seed for the first split. These test were carried out on a number of 
different classification problems, where large numbers of hidden nodes were already 
known to be required, and with a number of different splitting criteria. Prolonged 
experimentation and consideration of this failure lead to the hypothesis that a split 
might be made to correct some miscla.<;sified patterns in one region of the input 
space but, owing to the long range effects of MLP decision boundaries, the changed 
positions of the planes might cause a much greater number of misclassifications 
elsewhere. These would tend to cause the newly creat.ed nodes to slip back to the 
position of the node from which they were created, with no overall benefit. This 
possibility was tested hy re-implementing the splitter technique in a gaussian mix­
ture modeling system, which uses a network of localised receptive fields, and hence 
does not have the long range effects which occurred in the multi layer perceptron. 

5 Implementation of the splitter in a Gaussian Mixture 
Model, and the results 

The Gaussian Mixt.ures Model [Cox91] is a clustering algorithm, which attempts 
to model the distribution of a points in a data set. It consists of a numher of 
mult.ivariate gaussian dist.rihut.ions in different posit.ions in t.he input space, and 
wit.h different variances in different direct.ions. The responses of t.hese recept.ive 
fields (humps) are weighted and summed together; the weights are calculated to 
sat.isfy the PDF const.raint. that t.he responses should sum to one over the data set. 
For the experiment.s on node splitting, the variance was the same in all direct.ions for 
a particular bump, leading to a model which is a sum of weight.ed spherical gaussian 
distribut.ions of different sizes and in different. positions. The model is t.rained by 
gradient ascent in the likelihood of the model fitting the data, which leads t.o a 
set of learning rules for re-estimat.ing the weights, then t.he cent.re positions of the 
recept.ive fields, then their variances. 

For t.he splitter, a small model is trained until nothing more can be learned, and 
the paramet.ers are frozen. The training set is run t.hrough once more, and the 
updat.es are calculated which each pattern attempts to make to the centre position 
of each receptive field. The first principal component and trace of these updates are 
calculated by the iterative met.hod, and any nodes for which t.he principal component 
variance is a large proportion of the trace is split in two. 

The algorithm is quick to converge, and is slowed down only a. lit.tle by the oV('fhead 
of computing the principal component and trace. Figure 3 shows the application of 
t.he gaussian mixture splitter to modelling a circle and an enclosing annulus; in the 
circle (a) there is no dominant. principa.l component direction in the data ('Overed by 
the receptive field of each node (shown at. one st.anda.rd deviation by a circle), while 
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in (b) three nodes are clearly insufficient to model the annulus, and one has just 
undergone a split. (c) shows the same data set. and model a little later in t.raining 
after a number of splits have taken place. The technique has been evaluated on a 
number of other simple problems, with no negat.ive results to date. 

Figure 3: Gaussian mixt.ure model with node-splitting applied to a circle and sur­
rounding annulus 

6 Conclusions 

The split.ter t.echnique based on taking the principal component. of the influences 
on hidden nodes in a network, ha.g been shown to be useful in the multi layer 
perceptron in only a very limited number of cases. The split in this kind of net.work 
corresponds to a hinge in the decision boundary, which corrects the errors for which 
it was calculated, but usually caused for more errors in other parts of the input 
space. This problem does not occur in networks of localised receptive fields such 
as radial ba."is funct.ions of gaussian mixture distributions, where it appears to 
work very well. Further studies will include splitting nodes into more than two, in 
cases where there is more than one dominant principal component, and applying 
node-split.t.ing to different. modelling algorithms, and to gaussian mixtures in hidden 
markov models for speech recognition. 

The analysis of the sensit.ivity of the net.work error to individual nodes gives an 
ordered list which can be used for both splitting and pruning in the same network, 
although splitting does not generally work in the MLP. This measure has been 
demonstrated in t.he input layer, to identify which network inputs are more or less 
useful in the classification t.ask. 
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