A competitive modular connectionist architecture

Part of Advances in Neural Information Processing Systems 3 (NIPS 1990)

Bibtex Metadata Paper

Authors

Robert Jacobs, Michael Jordan

Abstract

We describe a multi-network, or modular, connectionist architecture that captures that fact that many tasks have structure at a level of granularity intermediate to that assumed by local and global function approximation schemes. The main innovation of the architecture is that it combines associative and competitive learning in order to learn task decompositions. A task decomposition is discovered by forcing the networks comprising the architecture to compete to learn the training patterns. As a result of the competition, different networks learn different training patterns and, thus, learn to partition the input space. The performance of the architecture on a "what" and "where" vision task and on a multi-payload robotics task are presented.