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Abstract 

The performance of seven minimization algorithms are compared on five 
neural network problems. These include a variable-step-size algorithm, 
conjugate gradient, and several methods with explicit analytic or numerical 
approximations to the Hessian. 

1 Introduction 

There are several minimization algorithms in use which in the nth iteration vary 
the ith coordinate Xi in the direction 

S~+l = r~s~ + h~V~ , " " (1) 

where Vf = ;:.1 is the ith component of the gradient of the error measure E 
• z .. 

at zn, sO = V O, and rn and h n are chosen differently in different algorithms. 
Algorithms also use various methods for choosing the step size .,.,n to be taken along 
direction sn. In this study, 7 algorithms were compared on a suite of 5 neural 
network problems. These algorithms are defined in table 1. 

1.1 The algorithms 

The algorithms investigated are Silva and Almeida's variable-step-size algorithm 
(Silva, 1990) which closely resembles Toolenaere's "SuperSAB" algorithm (Toole-
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naere, 1990), conjugate gradient (Press, 1988), and 5 variants of an algorithm 
advocated by LeCun (LeCun, 1989), which employs an analytic calculation of the 
diagonal terms of the matrix of second derivatives. (Algorithms involving an ap­
proximation of the full Hessian, the inverse of the matrix of second derivatives, were 
studied by Watrous (Watrous, 1987).) In 4 of these methods the gradient is divided 
component-wise by a decaying average of either the second derivatives or their ab­
solute values. Dividing by the absolute values assures that s . V < 0, and reflects 
the philosophy that directions with high curvature, be it positive or negative, are 
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not good ones to follow because the quadratic approximation is likely to break down 
at short distances. In the remaining method, sketched in (Rohwer, 1990a,b), the 
gradient is divided componentwise by the maximum of the absolute values of an 
analytic and numerical calculation of the second derivitives. Again the philosopy is 
that curvature is to be avoided. The numerical calculation may detect evidence of 
nearby high curvature at a point where the analytic calculation finds low curvature. 

Some algorithms conventionally use a multi-step I-dimensional "linesearch" to de­
termine how far to proceed in direction 8, whereas others take a single step accord­
ing to some formula. A linesearch guarantees descent (more precisely, non-ascent), 
which is beneficial if local minima pose no threat. Table?? shows the step-size 
methods used in this study; the decisions are rather arbitrary. The theoretical basis 
of the conjugate gradient method is lost if exact linesearches are not used, but it is 
lost anyway on any non-quadratic function. Silva and Toolenaere's use a single-step 
method which guarantees descent by retracting any step which does not produce 
ascent. The method is not a linesearch however, because the step following a re­
tracted step will be in a different direction. Space limitations prohibit a detailed 
specification of the of the linesearch algorithm and the convergence criteria used. 
These details may be very important. A longer paper is planned in which they are 
to be specified, and their influence on performance studied. 

1.2 The test problems 

Two types of problems are used in these tests. One is a strictly-layered 3-layer back 
propagation network in which the minimization variables are the weights. The test 
problems are 4-bit parity using 4 hidden nodes, auto-association of 10-bit random 
patterns using 7 hidden nodes, and the Peterson and Barney vowel classification 
problem (Peterson, 1952), which uses 2 inputs, 10 hidden nodes, and 10 target 
nodes. The other type is a fully connected recurrent network trained by the Moving 
Targets method (Rohwer, 1990a,b). In this case the minimization variables are the 
weights and the moving targets, which can be regarded as variable training data 
for the hidden nodes. The limit cycle switching problem and the 100-step context 
sensitivity problem from these references are the test problems used. In the limit­
cycle switching problem, a single target node is required to regularly generate pulses 
of width proportional to a 2-bit binary number indicated by 2 input nodes. In the 
100-step context problem, the training data always has an input pulse at time step 
100, and sometimes has an input pulse at time O. The target node is required to 
turn on at time 100 if and only if there was an input pulse at time O. 

Each method is tested on each problem with 10 different random initial conditions, 
except for the parity problem which was done with 100 different initial conditions. 

1.3 Unconventional nonlinearity 

An unconventional form of nonlinearity was used in these tests. The usual 
/(x) = 1/(1 + e-~) presents difficulties when x - ±oo because its derivative be­
comes very small. This makes the system learn slowly if activations become large. 
Also, numerical noise becomes serious if expressions such as /(x)(l- /(x)) are used 
in the derivative calculations. Various cutoff schemes are sometimes used to pre­
vent these problems, but these introduce discontinuities and/or incorrect derivative 
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Figure 1: The nonlinearity used. 

calculations which present further problems for second-derivative methods. In early 
work it was found that algorithm performance was highly sensitive to cutoff value 
(More systematic work on this subject is wanting.), so an entirely different non­
linearity was introduced which is bounded but has reasonably large derivatives for 
most arguments. This combination of properties can only be had with an oscillatory 
function. It was also desired to retain the property of 1/(1 + e-~) that it has large 
"saturated regions" in which it is approximately constant. The function used is 

f(x) = ~ + 2(1 ~ {3) (1 + {3sin(;:)2)sin(; sin(; sin(;:))) (2) 

with (l' = 10 and {3 = 0.02. This function is graphed in figure 1. 

2 Results 

An algorithm is useful if it produces good solutions quickly. The data for each 
algorithm-problem pair is divided into separate sets for successful and unsuccessful 
runs. Success is defined rather arbitrarily as less than 1 % error on any target 
node for all training data in the backpropagation problems. In the Moving Target 
problems, it is defined in terms of the maximum error on any target node in the 
freely-running network, the threshold being 5% for the 4-limit-cycle problem and 
10% for the 100-step-context problem. 

The speed data, measured in number of gradient evaluations, is presented in figure 
2, which contains 4 tables, one for each problem except random autoassociation. A 
maximum of 10000 evaluations was allowed. Each table is divided into 7 columns, 
one for each algorithm. From left to right, the algorithms are Rohwer's algorithm 
(max....abs), conjugate gradient (cg), division by unsigned (an-8.bs) or signed (an-Bgn) 
analytically computed second derivatives and using a linesearch, these two with the 
linesearch replaced by a single variably-sized step (an_abs-Bs and an-sgn-Bs) and 
Silva's algorithm (silva..ss). The data in each of these 7 columns is divided into 
3 sub columns, the first (a) shows all data points, the second (s) shows data for 
successful runs only, and the third (f) shows data for the failures. Each error bar 
shows the mean and standard deviation of the data in its column. The all-important 
little boxes at the base of each column show the proportions of runs in that column's 
category. 
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The success criteria are quite arbitrary and innapropriate in many cases, so more 
detailed information on the quality of the solutions is given in Table 3. The maxi­
mum error on any target node after one time step, given the moving target values 
on the previous time step is shown for the Moving Target problems. Test set mis­
classifications are shown for the Peterson and Barney data, and final sum-squared 
error is shown for the parity problem. 

The random autoassociation results are omitted here to save space. They qualita­
tively resemble the Peterson and Barney results. 

Firm conclusions cannot be drawn, but the linesearch-based algorithms tend to 
outperform the others. Of these, the conjugate gradient algorithm and Rohwer's 
algorithm (Rohwer 1990a,b) are usually best. 

In recent correspondence with the author, Silva has suggested small changes in his 
algorithm. In particular, when the algorithm fails to find descent for 5 consecutive 
iterations, all the learning-rate parameters are halved. Preliminary tests suggest 
that this change may bring enormous improvements. 
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