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Abstract 
Spherical Units can be used to construct dynamic reconfigurable 
consequential regions, the geometric bases for Shepard's (1987) theory of 
stimulus generalization in animals and humans. We derive from Shepard's 
(1987) generalization theory a particular multi-layer network with dynamic 
(centers and radii) spherical regions which possesses a specific mass function 
(Cauchy). This learning model generalizes the configural-cue network model 
(Gluck & Bower 1988): (1) configural cues can be learned and do not require 
pre-wiring the power-set of cues, (2) Consequential regions are continuous 
rather than discrete and (3) Competition amoungst receptive fields is shown 
to be increased by the global extent of a particular mass function (Cauchy). 
We compare other common mass functions (Gaussian; used in models of 
Moody & Darken; 1989, Krushke, 1990) or just standard backpropogation 
networks with hyperplane/logistic hidden units showing that neither fare as 
well as models of human generalization and learning. 

1 The Generalization Problem 

Given a favorable or unfavorable consequence, what should an organism assume about 
the contingent stimuli? If a moving shadow overhead appears prior to a hawk attack 
what should an organism assume about other moving shadows, their shapes and 
positions? If a dense food patch is occasioned by a particular density of certain kinds of 
shrubbery what should the organism assume about other shurbbery, vegetation or its 
spatial density? In an pattern recognition context, given a character of a certain shape, 
orientation, noise level etc.. has been recognized correctly what should the system 
assume about other shapes, orientations, noise levels it has yet to encounter? 
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Many "generalization" theories assume stimulus similarity represents a "failure to 
discriminate", rather than a cognitive decision about what to assume is consequential 
about the stimulus event. In this paper we implement a generalization theory with 
multilayer architecture and localized kernel functions (cf. Cooper, 1962; Albus 1975; 
Kanerva, 1984; Hanson & Burr, 1987,1990; Niranjan & Fallside, 1988; Moody & 
Darken, 1989; Nowlan, 1990; Krushke, 1990) in which the learning system constructs 
hypotheses about novel stimulus events. 

2 Shepard's (1987) Generalization Theory 

Considerable empirical evidence indicates that when stimuli are represented within an 
multi-dimensional psychological space, similarity, as measured by stimulus 
generalization, drops off in an approximate exponential decay fashion with psychological 
distance (Shepard, 1957, 1987). In comparison to a linear function, a similarity-distance 
relationship with upwards concave curvature, such as an exponential-decay curve, 
exaggerates the similarity of items which are nearby in psychological space and 
minimizes the impact of items which are further away. 

Recently, Roger Shepard (1987) has proposed a "Universal Law of Generalization" for 
stimulus generalization which derives this exponential decay similarity-distance function 
as a "rational" strategy given minimal information about the stimulus domain (see also 
Shepard & Kannappan, this volume). To derive the exponential-decay similarity­
distance rule, Shepard (1987) begins by assuming that stimuli can be placed within a 
psychological space such that the response learned to anyone stimulus will generalize to 
another according to an invariant monotonic function of the distance between them. If a 
stimulus, 0, is known to have an important consequence, what is the probability that a 
novel test stimulus, X, will lead to the same consequence? Shepard shows, through 
arguments based on probabilistic reasoning that regardless of the a priori expectations 
for regions of different sizes, this expectation will almost always yield an approximate 
exponentially decaying gradient away from a central memory point. In particular, very 
simple geometric constraints can lead to the exponential generalization gradient. 
Shepard (1987) assumes (1) that the consequential region overlaps the consequential 
stimulus event. and (2) bounded center symmetric consequential regions of unknown 
shape and size In the I-dimensional case it can be shown that g(x) is robust over a wide 
variety of assumptions for the distribution of pes); although for pes) exactly the Erlangian 
or discrete Gamma, g(x) is exactly Exponential. 

We now investigate possible ways to implement a model which can learn consequential 
regions and appropriate generalization behavior (cf. Shepard, 1990). 

3 Gluck & Bower's Configural-cue Network Model 

The first point of contact is to discrete model due to Gluck and Bower: The configural­
cue network model (Gluck & Bower, 1988) The network model adapts its weights 
(associations) according to Rescorla and Wagner's (1972) model of classical 
conditioning which is a special case of Widrow & Hoffs (1961) Least-Mean-Squares 
(LMS) algorithm for training one-layer networks. Presentation of a stimulus pattern is 
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represented by activating nodes on the input layer which correspond to the pattern's 
elementary features and pair-wise conjunctions of features. 

The configural-cue network model implicitly embodies an exponential generalization 
(similarity) gradient (Gluck, 1991) as an emergent property of it's stimulus 
representation scheme. This equivalence can be seen by computing how the number of 
overlapping active input nodes (similarity) changes as a function of the number of 
overlapping component cues (distance). If a stimulus pattern is associated with some 
outcome, the configural-cue model will generalize this association to other stimulus 
patterns in proportion to the number of common input nodes they both activate. 

Although the configura! cue model has been successful with various categorization data, 
there are several limitations of the configural cue model: (1) it is discrete and can not deal 
adequately with continuous stimuli (2) it possesses a non-adaptable internal 
representation (3) it can involve the pre-wiring the power set of possible cues 
Nonetheless, there are several properties that make the Configural Cue model successful 
that are important to retain for generalizations of this model: (a) the competitive stimulus 
properties deriving from the delta rule (b) the exponential stimulus generalization 
property deriving from the successive combinations of higher-order features encoded by 
hidden units. 

4 A Continuous Version of Shepard's Theory 
We derive in this section a new model which generalizes the configural cue model and 
derives directly from Shepard's generalization theory. In Figure 1, is shown a one 
dimensional depiction of the present theory. Similar to Shepard we assume there is a 
consequential 
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Figure 1: Hypothesis Distributions based on Consequential Region 

region associated with a significant stimulus event, O. Also similar to Shepard we 
assume the learning system knows that the significant stimulus event is contained in the 
consequential region, but does not know the size or location of the consquential region. 
In absence of this information the learning system constructs hypothesis distributions 
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(0') which mayor maynot be contained in the consequential region but at least overlap 
the significant stimulus event with some finite probablity measure. In some hypothesis 
distributions the significant stimulus event is "typical" in the consequential region, in 
other hypothesis distributions the significant stimulus event is "rare". Consequently, the 
present model differs from Shepard's approach in that the learning system uses the 
consequential region to project into a continuous hypothesis space in order to construct 
the conditional probability of the novel stimulus, X, given the significant stimulus event 
o. 
Given no further information on the location and size of the consequential region the 
learning system averages over all possible locations (equally weighted) and all possible 
(equally weighted) variances over the known stimulus dimension: 

g(x) = Xp(S)lp (C)H(x,s,C)dCdS (1) 

In order to derive particular gradients we must assume particular forms for the hypothesis 
distribution, H(x,s,c). Although we have investigated many different hypothesis 
distributions and wieghting functions (p(c), pes)), we only have space here to report on 
two bounding cases, one with very "light tails", the Gaussian, and one with very "heavy 
tails", the Cauchy (see Figure 2). These two distributions are extremes and provide a 
test of the robustness of the generalization gradient. At the same time they represent 
different commitments to the amount of overlap of hidden unit receptive fields and the 
consequent amount of stimulus competition during learning. 
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Figure 2: Gaussian compared to the Cauchy: Note heavier Cauchy tail 

Equation 2 was numerically integrated (using mathematica), over a large range of 
variances and a large range of locations using uniform densities representing the 
weighting functions and both Gaussian and Cauchy distributions representing the 
hypothesis distributions. Shown in Figure 3 are the results of the integrations for both the 
Cauchy and Gaussian distributions. The resultant gradients are shown by open circles 
(Cauchy) or stars (Gaussian) while the solid lines show the best fitting exponential 
gradient. We note that they approximate the derived gradients rather closely in spite of 
the fact the underlying forms are quite complex, for example the curve shown for the 
Cauchy integration is actually: 
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-5Arctan ( x -{ 2 ) + 0.01 [Arctan (1 OO(x -c 1))J + 5Arctan ( x +{ 1 ) - (2) 

0.01 [Arctan (100(X+C2))] - 'l2«c2+x)log(1-s lx+x 2)+(c l-x)log(s2-s lx+x 2))-

'l2(c l-x)log(1+s lx+x 2) + (c2+x)log(s2+s lx+x 2)) 

Consequently we confinn Shepard's original observation for a continuous version} of his 
theory that the exponential gradient is a robust consequence of minimum infonnation set 
of assumptions about generalization to novel stimuli. 
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Figure 3: Generalization Gradients Compared to Exponential (Solid Lines) 

4.1 Cauchy vs Gaussian 

As pointed out before the Cauchy has heavier tails than the Gaussian and thus provides 
more global support in the feature space. This leads to two main differences in the 
hypothesis distributions: 

(1) Global vs Local support: Unlike back-propagation with hyperplanes, Cauchy can be 
local in the feature space and unlike the Gaussian can have more global effect. 

(2) Competition not Dimensional scaling: Dimensional "Attention" in CC and Cauchy 
multilayer network model is based on competition and effective allocation of resources 
during learning rather than dimensional contraction or expansion. 

1 N-Dimensional Versions: we generalize the above continuous J-d model to an N-dimensional model by 
assuming that a network of Cauchy units can be used to construct a set of consequential regions each 
possibly composed of several Cauchy receptive fields. Consequently, dimensions can be differentially 
weighted by subsets of cauchy units acting in concert could produce metrics like L-J nonns in separable 
(e.g., shape, size of arbitrary fonns) dimension cases while equally weighting dimensions similar to metries 
like L-2 nonns in integral (e.g., lightness, hue in color) dimension cases. 



Spherical Units as Dynamic Consequential Regions 661 

Since the stimulus generalization properites of both hypothesis distributions are 
indistinguishable (both close to exponential) it is important to compare categorization 
results based on a multilayer gradient descent model using both the Cauchy and Gaussian 
as hidden node functions. 

5 Comparisons with Human Categorization Performance 
We consider in the final section two experiments from human learning literature which 
constrain categorization results. The model was a multilayer network using standard 
gradient descent in the radius, location and second layer weights of either Cauchy or 
Gaussian functions in hidden units. 

5.1 Shepard, Hovland and Jenkins (1961) 

In order to investigate adults ability to learn simple classification SH&J used eight 3-
dimensional stimuli (comers of the cube) representing seperable stimuli like shape, color 
or size. Of the 70 possible 4-exempler dichotomies there are only six unique 4 exemplar 
dichotomies which ignor the specific stimulus dimension . 
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Figure 4: Classification Learning Rate for Gaussian and Cauchy on SHJ stimuli 

These dichotomies involve both linearly separable and nonlinearly separable 
classifications as well as selective dependence on a specific dimension or dimensions. 
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For both measures of trials to learn and the number of errors made during learning the 
order of difficulty was (easiest) I<II<llI<lV<V<VI (hardest). 

In Figure 4, both the Cauchy model and the Gaussian model was compared using the SHJ 
stimuli. Note that the Gaussian model misorders the 6 classification tasks: 
I<lV<lII<ll<V<VI while the Cauchy model confonns with the human perfonnance. 

5.2 Medin and Schwanenflugel (1981) 

Data suitable to illustrate the implications of this non-linear stimulus generalization 
gradient for classification learning, are provided by Medin and Schwanenflugel (1981). 
They contrasted perfonnance of groups of subjects learning pairs of classification tasks, 
one of which was linearly separable and one of which was not. One of the classifications 
is linearly separable (LS) and the other is not (NLS). 
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Figure 5: Subjects (a) Cauchy (b) Gaussian (c) and Backprop 

(d) Leamiog perfonnance 00 the M&S stimuli. 

An important difference between the tasks lies in how the between-category and within­
category distances are distributed. The linearly separable task is composed of many 
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"close" (Hamming distance=l) and some "far" (Hamming distance=3) relations, while 
the non-separable task has a broader distribution of "close", "medium", and "far" 
between-category distances. These unequal distributions have important implications for 
models which use a non-linear mapping from distance to similarity. Medin and 
Schwanenflugel reported reliable and complete results with a four-dimensional task that 
embodied the same controls for linear separability and inter-exemplar similarities. To 
evaluate the relative difficulty of the two tasks, Medin & Schwanenflugel compared the 
average learning curves of subjects trained on these stimuli. Subjects found the linearly 
separable task (LS) more difficult than the non-linearly separable task (NLS), as 
indicated by the reduced percentage of errors for the NLS task at all points during 
training (see next Figure 5--Subjects, top left) In Figure 5 is shown 10 runs of the Cauchy 
model (top right) note that it, similar to the human performance, had more difficulty with 
the LS than the NLS separable task. Below this frame is the results for the Gaussian 
model (bottom left) which does show a slight advantage of learning the NLS task over 
the LS task. While in the final frame (bottom right) of this series standard backprop 
actually reverses the speed of learning of each task relative to human performance. 

6 Conclusions 
A continuous version of Shepard's (1987) generalization theory was derived providing 
for a specific Mass/Activation function (Cauchy) and receptive field distribution. The 
Cauchy activation function is shown to account for a range of human learning 
performance while another Mass/Activation function (Gaussian) does not. The present 
model also generalizes the Configural Cue model to continuous, dynamic, internal 
representation. 

Attention like effects are obtained through competition of Cauchy units as a fixed 
resource rather than dimensional "shrinking" or "expansion" as in an explicit rescaling of 
each axes. 

Cauchy units are a compromise; providing more global support in approximation than 
gaussian units and more local support than the hyperplane/logistic units in 
backpropagation models. 
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