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Abstract

We introduce a geometric approach for investigating the power of threshold
circuits. Viewing n-variable boolean functions as vectors in R?" | we invoke
tools from linear algebra and linear programming to derive new results on
the realizability of boolean functions using threshold gates.

Using this approach, one can obtain: (1) upper-bounds on the number of
spurious memories in Hopfield networks, and on the number of functions
implementable by a depth-d threshold circuit; (2) a lower bound on the
number of orthogonal input functions required to implement a threshold
function; (3) a necessary condition for an arbitrary set of input functions to
implement a threshold function; (4) a lower bound on the error introduced
in approximating boolean functions using sparse polynomials; (5) a limit
on the effectiveness of the only known lower-bound technique (based on
computing correlations among boolean functions) for the depth of thresh-
old circuits implementing boolean functions, and (6) a constructive proof
that every boolean function f of n input variables is a threshold function
of polynomially many input functions, none of which is significantly cor-
related with f. Some of these results lead to generalizations of key results
concerning threshold circuit complexity, particularly those that are based
on the so-called spectral or ITarmonic analysis approach. Moreover, our
geometric approach yields simple proofs, based on elementary results from
linear algebra, for many of these earlier results.
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1 Introduction

An S-input threshold gate is characterized by S real weights w,,..., ws. It takes S
inputs: z1,...,zg, each either 4+1 or —1, and outputs +1 if the linear combination
2;9:1 w;z; is positive and —1 if the linear combination is negative. Threshold gates
were recently used to implement several functions of practical interest (including:
Parity, Addition, Multiplication, Division, and Comparison) with fewer gates and
reduced depth than conventional circuits using AND, OR, and NOT gates [12, 4, 11].

This success has led to a considerable amount of research on the power of threshold
circuits [1, 10, 9, 11, 3, 13]. However, even simple questions remain unanswered. It
1s not known, for example, whether there is a function that can be computed by a
depth-3 threshold circuit with polynomially many gates but cannot be computed
by any depth-2 circuit with polynomially many threshold gates.

Geometric approaches have proven useful for analyzing threshold gates. An S-input
threshold gate corresponds to a hyperplane in R®. This has been used for example
to count the number of boolean functions computable by a single threshold gate [6],
and also to determine functions that cannot be implemented by a single threshold
gate. Ilowever, threshold circuits of depth two or more do not carry a simple geo-
metric interpretation in R¥. The inputs to gates in the second level are themselves
threshold functions, hence the linear combination computed at the second level is
a non-linear function of the inputs. Lacking a geometric view, researchers [5, 3]
have used indirect approaches, applying harmonic-analysis techniques to analyze
threshold gates. These techniques, apart from their complexity, restricted the input
functions of the gates to be of very special types: input variables or parities of the
input variables, thus not applying even to depth-two circuits.

In this paper, we describe a simple geometric relation between the output function
of a threshold gate and its set of input functions. This applies to arbitrary sets of
input functions. Using this relation, we can prove the following results: (1) upper
bounds on (a) the number of threshold functions of any set of input functions, (b)
the number of spurious memories in a Ilopficld network, and (¢) the number of
functions implementable by threshold circuits of depth d; (2) a lower bound on the
number of orthogonal input functions required to implement a threshold function;
(3) a quantifiable necessary condition for a set of functions to implement a threshold
function; (4) a lower bound on the error in approximating boolean functions using
sparse polynomials; (5) a limit on the effectiveness of the correlation method used
in [7] to prove that a certain function cannot be implemented by depth two circuits
with polynomially many gates and polynomially bounded weights; (6) a proof that
every function f is a threshold function of polynomially many input functions, none
of which is significantly correlated with f.

Special cases of some of these results, where the input functions to a threshold gate
are restricted to the input variables, or parities of the input variables, were proven
in [5, 3] using harmonic-analysis tools. Our technique shows that these tools are
not needed, providing simpler proofs for more general results.

Due to space limitations, we cannot present the full details of our results. Instead,
we shall introduce the basic definitions followed by a technical summary of the
results; the emphasis will be on pointing out the motivation and relating our results
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with those in the literature. The proofs and other technical details will appear in a
complete journal paper.

2 Definitions and Background

An n-variable boolean function is a mapping f : {-1,1}* — {-1,1}. We view f
as a (column) vector in R2". Each of f’s 2" components is either —1 or +1 and
represents f(z) for a distinct value assignment z of the n boolean variables. We view
the S weights of an S-input threshold gate as a weight vector w = (wy,---,ws)T
n RA.

Let the functions fi,..., fs be the inputs of a threshold gate w. The gate computes
a function f (or f is the output of the gate) if the following vector equation holds:

S
f = sgn (Z fsws) (1)
i=1
+1 ifz >0,
sgn(z) = { -1 ifz <0,
undefined ifz =0.

Note that this definition requires that all components of Z;.S:l fiw; be nonzero. It
is convenient to write Equation (1) in a matrix form:

where

f=sgn(Yw)
where the put matriz

Y=[fi-fs]
is a 2" by S matrix whose columns are the input functions. The function f, is a
threshold function of fi,..., fs if there exists a threshold gate (i.e., w) with inputs

fi,-.., fs that computes f.
These definitions form the basis of our approach. Each function, being a +1 vector
in R2" determines an orthantin R2". A function f is the output of a threshold gate

whose input functions are f, ..., fs if and only if the linear combination Ef:l fiw;
defined by the gate lies inside the orthant determined by f.

Definition 1 The correlation of two n-variable boolean functions f) and fo 1s:

Chni. = (T f2)/2%

the two functions are uncorrelated or orthogonal if Cy, s, = 0.

Note that Cy,y, = 1 — 2dy(f1, f2)/2", where dy(f1, f2) is the lamming distance
between f; and fo; thus, the correlation can be interpreted as a measure of how
‘close’ the two functions are.

Fix the input functions fy,...fs to a threshold gate. The correlation vector of a
function f, with the input functions is

Cry =(YT)/2" = (Cys, Cppy -+ Cpps)T-
Next, we define C as the maximum in magnitude among the correlation coefficients,

ie ,C = {ICss,] : 1<i< S}
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3 Summary of Results

The correlation between two n-variable functions is a multiple of 2=(*=1) bounded
between —1 and 1, hence can assume 2" + 1 values. The correlation vector Cyy =
(Ctsyy---,Css,)T can therefore assume at most (2" +1)% different values. There are
22" Boolean functions of n Boolean variables, hence many share the same correlation

vector. However, the next theorem says that a threshold function of fy,..., fs does
not share its correlation vector with any other function.

Uniqueness Theorem Let f be a threshold function of fy,..., fs. Then, for all
9# [,

Cyy # Cyy

Corollary 1 There are at most (2" +1)° threshold functions of any set of S input
functions.

The special case of the Uniqueness Theorem where the functions fi,..., fs are
the input variables had been proven in [5, 9]. The proof used harmonic-analysis
tools such as Parseval’s theorem. It relied on the mutual orthogonality of the input
functions (namely, Cz, -, = 0 for all i # j). Another special case where the input
functions are parities of the input variables was proven in [3]. The same proof
was used; see e.g. , pages 419-422 of [9]. Our proof shows that the harmonic-
analysis tools and assumptions are not needed thereby (1) significantly simplifying
the proof, and (2) showing that the functions fy,..., fs need not be orthogonal:
the Uniqueness Theorem holds for all collections of functions. The more general
result of the Uniqueness Theorem can be applied to obtain the following two new
counting results.

Corollary 2 The number of stable states in a Hopfield network with n elemenis

which s programmed by the ouler product rule to store s given veclors is <
Qslog(n-l-l)_

Corollary 3 Let F,,(S(n), d) be the number of n-variable boolean functions comput-
ed by depth-d threshold circuits with fan-in bounded by S(n) (we assume S(n) > n).
Then, for alld,n > 1,

Fo(S(n),d) < 200+°S()*Y)

It follows easily from our geometric framework that if Cyy = 0 then f is not a
threshold function of fi,..., fs: every linear combination of fi, ..., fs is orthogonal
to f, hence cannot intersect the orthant determined by f.

Next, we consider the case where Cyy # 0. Define the generalized spectrum to be
the S-dimensional vector:

B=(B,....05)7 = (YTY)"'YTf

(the reason for the definition and the name will be clarified soon).





















