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'~le introduce a geometric approach for investigating the power of threshold 
circuits. Viewing n-variable boolean functions as vectors in 'R'2", we invoke 
tools from linear algebra and linear programming to derive new results on 
the realizability of boolean functions using threshold gat.es. 
Using this approach, one can obtain: (1) upper-bounds on the number of 
spurious memories in HopfielJ networks, and on the number of functions 
implementable by a depth-d threshold circuit; (2) a lower bound on the 
number of ort.hogonal input. functions required to implement. a threshold 
function; (3) a necessary condit.ion for an arbit.rary set of input. functions to 
implement a threshold function; (4) a lower bound on the error introduced 
in approximating boolean functions using sparse polynomials; (5) a limit 
on the effectiveness of the only known lower-bound technique (based on 
computing correlations among boolean functions) for the depth of thresh­
old circuit.s implement.ing boolean functions, and (6) a constructive proof 
that every boolean function f of n input variables is a threshold function 
of polynomially many input functions, none of which is significantly cor­
related with f. Some of these results lead t.o genera.lizations of key results 
concerning threshold circuit complexity, particularly t.hose that are based 
on the so-called spectral or Ha.rmonic analysis approach. Moreover, our 
geometric approach yields simple proofs, based on elementary results from 
linear algebra, for many of these earlier results. 
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1 Introduction 

An S-input threshold gate is characterized by S real weights 'WI, ••. , 'Ws . It takes S 
inputs: Xl, . .. , xs, each either +1 or -1, and outputs +1 if the linear combination 
2::f=1 'WiXi is positive and -1 if the linear combination is negative. Threshold gates 
were recently used to implement several functions of practical interest (including: 
Parity, Addition, Multiplication, Division, and Comparison) with fewer gates and 
reduced depth than conventional circuits using AND, OR, and NOT gates [12,4, 11]. 

This success has led to a considerable amount of research on the power of threshold 
circuits [1, 10,9, 11,3, 13]. However, even simple questions remain unanswered. It 
is not known, for example, whether there is a function that can be computed by a 
depth-3 threshold circuit with polynomially many gates but cannot be computed 
by any depth-2 circuit with polynomially many threshold gates. 

Geometric approaches have proven useful for analyzing threshold gates. An S-input 
threshold gate corresponds to a hyperpla.ne in n.s. This has been used for example 
to count the number of boolean functions computable by a single threshold gate [6], 
and also to determine functions that cannot be implemented by a single threshold 
gate. However, t.hreshold circuits of depth two or more do not carry a simple geo­
metric interpretation in 'R,s. The inputs to gates in the second level are themselves 
threshold functions, hence the linear combination computed at the second level is 
a non-linear function of the inputs. Lacking a geomet.ric view, researchers [5, 3] 
have used indirect approaches, applying harmonic-analysis t.echniques to analyze 
threshold gates. These techniques, apart from their complexity, restricted the input 
functions of the gates to be of very special types: input variables or parities of the 
input variables, t.hus not applying even t.o depth-t.wo cil'Cuits. 

In this paper, we describe a simple geometric relation between the output function 
of a threshold gate and its set of input functions. This applies to arbitrary sets of 
input functions. Using this relation , we can prove t.he following results: (1) upper 
bounds on (a) the number of threshold functions of any set of input functions, (b) 
the number of spurious memories in a IIopfield network, and (c) the number of 
functions implementable by threshold circuits of depth d; (2) a lower bound on the 
number of orthogonal input functions required to implement a threshold function; 
(3) a quantifiable necessary condition for a set of functions to implement a threshold 
function; (4) a lower bound on the error in approximating boolean functions using 
sparse polynomials; (5) a limit on the effectiveness of the correlation method used 
in [7] to prove t.hat a cert.ain function cannot be implement.ed by depth two circuit.s 
with polynomially many gates and polynomially bounded weights; (6) a proof that 
every function f is a threshold function of polynomially many input functions, none 
of which is significant.ly correlated wit.h f. 

Special cases of some of these results, where the input functions to a threshold gate 
are restricted to the input. variables, or parities of the input variables, were proven 
in [5, 3] using harmonic-analysis tools. Our technique shows that these tools are 
not needed, providing simpler proofs for more general results. 

Due to space limitations, we cannot present the full details of our results. Instead, 
we shall introduce the basic definitions followed by a technical summary of the 
results; the emphasis will be on pointing out the motivation and relating our results 



On The Circuit Complexity of Neural Networks 955 

with those in the literature. The proofs and other technical details will appear in a 
complete journal paper. 

2 Definitions and Background 

An n-variable boolean function is a mapping f : {-I, l}n - {-I, I} . We view I 
as a (column) vector in n 2n. Each of 1's 2n com ponents is either -lor + 1 and 
represents f(x) for a distinct value assignment x of the n boolean variables. We view 
the S weights of an S-input threshold gate as a weight vector w = (WI, ... , Ws f 
in nS. 
Let the functions It, ... ,Is be the inputs of a threshold gate w. The gate computes 
a function f (or f is the output of the gate) if the following vector equation holds: 

where 

f = sgn (t j ,w,) 
,=1 

{ 
+1 

sgn(x) = -1 
undefined 

if x > 0, 
if x < 0, 
if x = o. 

(1) 

Note that this definition requires that all components of 2::=1 liWi be nonzero. It 
is convenient to write Equat.ion (1) in a matrix form: 

f = sgn(Yw) 

where the input matrix 
y = [It··· fs] 

is a 2n by S matrix whose columns are the input functions. The function f, is a 
threshold function of It, ... , fs if t.here exist.s a threshold gate (i.e., w) with inputs 
It, ... , Is that computes I· 

These definitions form the basis of our approach. Each function, being a ±1 vector 
in n2n , determines an orthant in 'R.2n. A function f is t.he output of a threshold gate 
whose input. functions are It, ... , fs if and only if t.he linear combination 2::=1 liWi 
defined by the gate lies inside the orthant determined by f. 

Definition 1 The correlation of two n-variable boolean functions It and his: 

Chh = UT f'2)/2 n ; 

the two functions are uncorrelated or orthogonal if Chh = O. 

Note that Chh = 1 - 2dlI(lt, 12)/2n , where dlI(lt, h) is the Hamming distance 
between It and 12; thus, the correlation can be interpreted as a measure of how 
'close' the two functions are. 

Fix the input functions It, ... fs to a threshold gate. The correlation vector of a 
function I, with the input functions is 

Cfl' = (}TT f)/2 n = (C"I C, h ... CJJs f· 
Next, we define C as the maximum in magnitude among the correlation coefficients, 

i.e. ,C={IC",I : l::;i::;S}. 
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3 Sumluary of Results 

The correlation between two n-variable functions is a multiple of 2-("-1), bounded 
between -1 and 1, hence can assume 2" + 1 values. The cOlTelation vector GJY = 
(GIJp . .. ,GJ It)T can therefore assume at most (2" + I)S different values. There are 
22ft Boolean functions of n Boolean variables, hence many share the same correlation 
vector. However, the next theorem says that a tht·eshold function of II, ... , f s does 
not share its correlation vector with any other function. 

Uniqueness Theorem Let f be a threshold function of 11, ... , fs. Then, for all 
9 f; f, 

Corollary 1 There are at most (2" + I)S threshold functions of any set of S input 
functions. 

The special case of the Uniqueness Theorem where the functions II, ... , fs are 
t.he input variables had been proven in [5, 9]. The proof used harmonic-analysis 
tools such as Parseval's theorem. It relied on the mutual orthogonality of the input 
functions (namely, CX"Xj = 0 for all i :f:. j). Another special case where the input 
functions are parities of the input variables was proven in [3]. The same proof 
was used; see e.g. , pages 419-422 of [9]. Our proof shows that the harmonic­
analysis tools and assumpt.ions are not needed thereby (1) significantly simplifying 
the proof, and (2) showing that the functions It, ... , fs need not be orthogonal: 
the Uniqueness Theorem holds for all collections of functions. The more general 
result of the Uniqueness Theorem can be applied to obtain the following two new 
counting results. 

Corollary 2 The number of stable states in a Hopfield network with n elements 
which is programmed by the outer product rule to store s given vectors is :::; 
2& log("+!). 

Corollary 3 Let Fn(S(71), d) be the number ofn-variable boolean functions comput­
ed by depth-d thresh.old circuits with fan-in bounded by S(n) (we assume S(n) ~ n). 
Then, for all d, n ~ 1, 

It follows easily from our geometric framework that if GJl' = 0 then f is not a 
threshold function of It, ... , f s: every linear combination of It, ... , f s is orthogonal 
to f, hence cannot intersect the orthant determined by f. 
Next, we consider the case where en' :f:. O. Define the generalized spectrum to be 
the S-dimensional vector: 

!3 = (!31, .. . ,!3s f = (yTy)-1yT f 

(the reason for the definition and\he name will be clarified soon). 
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Spectral-bound TheoreIn If I is a linear threshold function of It, ... , Is I then 
s 
L IPd �~� 1, hence, 
i=l 

S > 1//3, where /3 = max {IPil: 1 �~� i �~� S} 

The Spectral-Bound theorem provides a way of lower bounding the number S of 
input functions. Specifically, if Pi is exponentially small (in n) for all i E {I, ... , S}, 
then S must be exponentially large. 

In the special case where the input functions are parities of the input variables, all 
input functions are orthogonal; hence yTy = 2n Is and 

P = �~�y�T� I = Gn' . 
2n 

Note that every parity function p is a basis function of the Hadamard transfor­
m, hence Glp is the spectral coefficient corresponding to p in the transform (see 
[8, 2] for more details on spectral representation of boolean functions). Therefore, 
the generalized spectrum in this case is the real spectrum of I . In that case, the 
Spectral-Bound Theorem implies that S > �m�a�x�{�l�c�J�J�\�l�~�i�~�S�} �'� Therefore, the num­
ber of input functions needed is at least the reciprocal of the maximum magnitude 
among the spectral coefficients (i. e. , C). This special case was proved in [3]. A­
gain, their proofs used harmonic-analysis tools and assumptions that we prove are 
unnecessa.ry, thereby generalizing them to arbitrary input functions. Moreover, 
our geometric approach considerably simplifies the exposition by presenting simple 
proofs based on elementary results from linear algebra. 

In general, we can show that if the input. functions Ii are orthogonal (i. e. , GI,l) = 0 
for i f. j) or asymptotically orthogonal (i. e. , lim GI,l · = 0) then the number of 

n-oo } 

input functions S �~� I/C, where C is the largest (in magnitude) correlat.ion of the 
output function with any of its input function. 

We can also use the generalized spectrum to derive a lower bound on the error 
incurred in approxima.ting a boolean function, I, using a set of basis functions. 
The lower bound can then be applied to show that the Majority function cannot be 
closely approxim ated by a sparse polynomial. In particular, it can be shown that if a 
polynomial of the input variables with only polynomially many (in n) monomials is 
used to approximate an n variable Majority function then the approximation error 
is n(I/(log log n )3/2). This provides a direct spectral approach for proving lower 
bounds on the approximation error. 

The method of proving lower bounds on S in terms of the correlation coefficients 
GI I, of I with the possible input functions, can be termed the method of correla­
tions. Hajnal et. al. [7] used a different a.'3pect of this method1 to prove a lower 
bound on t.he depth of a threshold circuit that computes the Inner-product-mod-2 
function. 

1 They did not exactly use the correlation approach introduced in this paper, rather an 
equivalent framework. 












