
Learning by Combining Memorization
and Gradient Descent

John C. Platt
Synaptics, Inc.

2860 Zanker Road, Suite 206
San Jose, CA 95134

ABSTRACT

We have created a radial basis function network that allocates a
new computational unit whenever an unusual pattern is presented
to the network. The network learns by allocating new units and
adjusting the parameters of existing units. If the network performs
poorly on a presented pattern, then a new unit is allocated which
memorizes the response to the presented pattern. If the network
performs well on a presented pattern, then the network parameters
are updated using standard LMS gradient descent. For predicting
the Mackey Glass chaotic time series, our network learns much
faster than do those using back-propagation and uses a comparable
number of synapses.

1 INTRODUCTION
Currently, networks that perform function interpolation tend to fall into one of two
categories: networks that use gradient descent for learning (e.g., back-propagation),
and constructive networks that use memorization for learning (e.g., k-nearest neigh­
bors).

Networks that use gradient descent for learning tend to form very compact repre­
sentations, but use many learning cycles to find that representation. Networks that
memorize their inputs need to only be exposed to examples once, but grow linearly
in the training set size.

The network presented here strikes a compromise between memorization and gradi­
ent descent. It uses gradient descent for the "easy" input vectors and memorization
for the "hard" input vectors. If the network performs well on a particular input

714

Learning by Combining Memorization and Gradient Descent 715

vector, or the particular input vector is already close to a stored vector, then the
network adjusts its parameters using gradient descent. Otherwise, it memorizes the
input vector and the corresponding output vector by allocating a new unit. The ex­
plicit storage of an input-output pair means that this pair can be used immediately
to improve the performance of the system, instead of merely using that information
for gradient descent.

The network, called the resource-allocation network (RAN), uses units whose re­
sponse is localized in input space. A unit with a non-local response needs to undergo
gradient descent, because it has a non-zero output for a large fraction of the training
data.

Because RAN is a constructive network, it automatically adjusts the number of
units to reflect the complexity of the function that is being interpolated. Fixed-size
networks either use too few units, in which case the network memorizes poorly,
or too many, in which case the network generalizes poorly. Parzen windows and
K-nearest neighbors both require a number of stored patterns that grow linearly
with the number of presented patterns. With RAN, the number of stored patterns
grows sublinearly, and eventually reaches a maximum.

1.1 PREVIOUS WORK

Previous workers have used networks with localized basis functions (Broomhead &
Lowe, 1988) (Moody & Darken, 1988 & 89) (Poggio & Girosi, 1990). Moody has
further extended his work by incorporating a hash table lookup (Moody, 1989). The
hash table is a resource-allocating network where the values in the hash table only
become non-zero if the entry in the hash table is activated by the corresponding
presence of non-zero input probability.

The RAN adjusts the centers of the Gaussian units based on the error at the output,
like (Poggio & Girosi, 1990). Networks with centers placed on a high-dimensional
grid, such as (Broomhead & Lowe, 1988) and (Moody, 1989), or networks that use
unsupervised clustering for center placement, such as (Moody & Darken, 1988 &
89) generate larger networks than RAN, because they cannot move the centers to
increase the accuracy.

Previous workers have created function interpolation networks that allocate fewer
units than the size of training set. Cascade-correlation (Fahlman & Lebiere, 1990),
SONN (Tenorio & Lee, 1989), and MARS (Friedman, 1988) all construct networks
by adding additional units. These algorithms work well. The RAN algorithm
improves on these algorithms by making the addition of a unit as simple as possible.
RAN uses simple algebra to find the parameters of a new unit, while cascade­
correlation and MARS use gradient descent and SONN uses simulated annealing.

2 THE ALGORITHM
This section describes a resource-allocating network (RAN), which consists of a
network, a strategy for allocating new units, and a learning rule for refining the
network.

2.1 THE NETWORK

The RAN is a two-layer radial-basis-function network. The first layer consists of

716 Platt

units that respond to only a local region of the space of input values. The second
layer linearly aggregates outputs from these units and creates the function that
approximates the input-output mapping over the entire space.

A simple function that implements a locally tuned unit is a Gaussian:

Zj = L(Cjk - h)2,

k

Xj = exp(-Zj /wJ).
(1)

We use a C1 continuous polynomial approximation to speed up the algorithm,
without loss of network accuracy:

if z· < qw?'
J J'

otherwise;
(2)

where q = 2.67 is chosen empirically to make the best fit to a Gaussian.

Each output of the network Yi is a sum of the outputs Xj, each weighted by the
synaptic strength h ij plus a global polynomial. The Xj represent information about
local parts of the space, while the polynomial represents global information:

Yi = E hijXj + E Liklk + Ii· (3)
j k

The h ij Xj term can be thought of as a bump that is added or subtracted to the
polynomial term Lk Likh + Ii to yield the desired function.

The linear term is useful when the function has a strong linear component. In
the results section, the Mackey-Glass equation was predicted with only a constant
term.

2.2 THE LEARNING ALGORITHM

The network starts with a blank slate: no patterns are yet stored. As patterns are
presented to it, the network chooses to store some of them. At any given point
the network has a current state, which reflects the patterns that have been stored
previously.

The allocator may allocate a new unit to memorize a pattern. After the new unit
is allocated, the network output is equal to the desired output f. Let the index of
this new unit be n.

The peak of the response of the newly allocated unit is set to the memorized input
vector,

(4)

The linear synapses on the second layer are set to the difference between the output
of the network and the novel output,

(5)

Learning by Combining Memorization and Gradient Descent 717

The width of the response of the new unit is proportional to the distance from the
nearest stored vector to the novel input vector,

(6)

where K is an overlap factor. As K grows larger, the responses of the units overlap
more and more.

The RAN uses a two-part memorization condition. An input-output pair (I, f)
should be memorized if the input is far away from existing centers,

III - Cne ares t II > oCt), (7)

and if the difference between the desired output and the output of the network is
large

Ilf - y(l) I I > f. (8)

Typically, f is a desired accuracy of output of the network . Errors larger than f

are immediately corrected by the allocation of a new unit, while errors smaller than
f are gradually repaired using gradient descent. The distance oCt) is the scale of
resolution that the network is fitting at the tth input presentation. The learning
starts with oCt) = 0max, which is the largest length scale of interest, typically the
size of the entire input space of non-zero probability density. The distance oCt)
shrinks until the it reaches Omin, which is the smallest length scale of interest. The
network will average over features that are smaller than Omin. We used a function:

6(t) = max(omax exp(-tiT), Omin), (9)

where T is a decay constant.

At first, the system creates a coarse representation of the function, then refines the
representation by allocating units with smaller and smaller widths. Finally, when
the system has learned the entire function to the desired accuracy and length scale,
it stops allocating new units altogether.

The two-part memorization condition is necessary for creating a compact network.
If only condition (7) is used, then the network will allocate units instead of using
gradient descent to correct small errors. If only condition (8) is used, then fine-scale
units may be allocated in order to represent coarse-scale features, which is wasteful.

By allocating new units the RAN eventually represents the desired function ever
more closely as the network is trained. Fewer units are needed for a given accuracy
if the first-layer synapses Cj 1:, the second-level synapses hij , and the parameters for
the global polynomial'Yi and Lil: are adjusted to decrease the error: £ = lIil - fll2
(Widrow & Hoff, 1960). We use gradient descent on the second-layer synapses to
decrease the error whenever a new unit is not allocated:

Ahij = a(1i - Yi)Xj,

A'Yi = a(Ti - Yi),

ALiI: = a(Ti - Yi)h.

(10)

718 Platt

In addition, we adjust the centers of the responses of units to decrease the error:

(11)

Equation (11) is derived from gradient descent and equation (1). Empirically, equa­
tion (11) also works for the polynomial approximation (2).

3 RESULTS
One application of an interpolating RAN is to predict complex time series. As
a test case, a chaotic time series can be generated with a nonlinear algebraic or
differential equation. Such a series has some short-range time coherence, but long­
term prediction is very difficult.

The RAN was tested on a particular chaotic time series created by the Mackey-Glass
delay-difference equation:

x(t - r)
x(t + 1) = (1- b)x(t) + a ()10' l+xt-r

(12)

for a = 0.2, b = 0.1, and r = 17. We trained the network to predict the value
x(T + dT), given the values x(T), x(T - 6), x(T - 12), and x(T - 18) as inputs.

The network was tested using two different learning modes: off-line learning with
a limited amount of data, and on-line learning with a large amount of data. The
Mackey-Glass equation has been learned off-line, by other workers, using the back­
propagation algorithm (Lapedes & Farber, 1987), and radial basis functions (Moody
& Darken, 1989). We used RAN to predict the Mackey-Glass equations with the
following parameters: a = 0.02, 400 learning epochs, 6max = 0.7, K, = 0.87 and
6m in = 0.07 reached after 100 epochs. RAN was simulated using f = 0.02 and
f = 0.05. In all cases, dT = 85.

Figure 1 shows the efficiency of the various learning algorithms: the smallest, most
accurate algorithms are towards the lower left. When optimized for size of network
(f = 0.05), the RAN has about as many weights as back-propagation and is just
as accurate. The efficiency of RAN is roughly the same as back-propagation, but
requires much less computation: RAN takes approximately 8 minutes of SUN-4
CPU time to reach the accuracy listed in figure 4, while back-propagation took
approximately 30-60 minutes of Cray X-MP time.

The Mackey-Glass equation has been learned using on-line techniques by hashing
B-splines (Moody, 1989). We used on-line RAN using the following parameters;
a = 0.05, 6max = 0.7, 6min = 0.07, K, = 0.87, and 6min reached after 5000 input
presentations. Table 1 compares the on-line error versus the size of network for
both RAN and the hashing B-spline (Moody, personal communication). In both
cases, dT = 50. The RAN algorithm has similar accuracy to the hashing B-splines,
but the number of units allocated is between a factor of 2 and 8 smaller.

For more detailed results on the Mackey-Glass equation, see (Platt, 1991).

Learning by Combining Memorization and Gradient Descent 719

-o

o = RAN
... = hashing B-spline
o = standard RBF
• = K-means RBF * = back -propagation

o~ __________ -+ ____________ *-__________ ~

100 1000 10000 100000
Nwnber of Weights

Figure 1: The error on a test set versus the size of the network. Back-propagation
stores the prediction function very compactly and accurately, but takes a large
amount of computation to form the compact representation. RAN is as compact
and accurate as back-propagation, but uses much less computation to form its
representation.

Table 1: Comparison between RAN and hashing B-splines

Method Number of Units Normalized RMS Error

RAN, f = 0.05 50 0.071
RAN, f = 0.02 143 0.054

Hashing B-spline
1 level of hierarchy 284 0.074
Hashing B-spline

2 levels of hierarchy 1166 0.044

4 CONCLUSIONS
There are various desirable attributes for a network that learns: it should learn
quickly, it should learn accurately, and it should form a compact representation.
Formation of a compact representation is particularly important for networks that
are implemented in hardware, because silicon area is at a premium. A compact
representation is also important for statistical reasons: a network that has too
many parameters can overfit data and generalize poorly.

720 Platt

Many previous network algorithms either learned quickly at the expense of a com­
pact representation, or formed a compact representation only after laborious com­
putation. The RAN is a network that can find a compact representation with a
reasonable amount of computation.

Acknowledgements

Thanks to Carver Mead, Carl Ruoff, and Fernando Pineda for useful comments on
the paper. Special thanks to John Moody who not only provided useful comments
on the paper, but also provided data on the hashing B-splines.

References

Broomhead, D., Lowe, D., 1988, Multivariable function interpolation and adaptive
networks, Complex Systems, 2, 321-355.

Fahlman, S. E., Lebiere, C., 1990, The Cascade-Correlation Learning Architecture,
In: Advances in Neural Information Processing Systems 2, D. Touretzky, ed., 524-
532, Morgan-Kaufmann, San Mateo.

Friedman, J. H., 1988, Multivariate Adaptive Regression Splines, Department of
Statistics, Stanford University, Tech. Report LCSI02.

Lapedes, A., Farber, R., 1987, Nonlinear Signal Processing Using Neural Networks:
Prediction and System Modeling, Technical Report LA-UR-87-2662, Los Alamos
National Laboratory, Los Alamos, NM.

Moody, J, Darken, C., 1988, Learning with Localized Receptive Fields, In: Proceed­
ings of the 1988 Connectionist Models Summer School, D. Touretzky, G. Hinton,
T. Sejnowski, eds., 133-143, Morgan-Kaufmann, San Mateo.

Moody, J, Darken, C., 1989, Fast Learning in Networks of Locally-Tuned Processing
Units, Neural Computation, 1(2), 281-294.

Moody, J., 1989, Fast Learning in Multi-Resolution Hierarchies, In: Advances
in Neural Information Processing Systems 1, D. Touretzky, ed., 29-39, Morgan­
Kaufmann, San Mateo.

Platt., J., 1991, A Resource-Allocating Network for Function Interpolation, Neural
Computation, 3(2), to appear.

Poggio, T., Girosi, F., 1990, Regularization Algorithms for Learning that are Equiv­
alent to Multilayer Networks, Science, 247, 978-982.

Powell, M. J. D., 1987, Radial Basis Functions for Multivariable Interpolation: A
Review, In: Algorithms for Approximation, J. C. Mason, M. G. Cox, eds., Claren­
don Press, Oxford.

Tenorio, M. F., Lee, W., 1989, Self-Organizing Neural Networks for the Identi­
fication Problem, In: Advances in Neural Information Processing Systems 1, D.
Touretzky, ed., 57-64, Morgan-Kaufmann, San Mateo.

Widrow, B., Hoff, M., 1960, Adaptive Switching Circuits, In: 1960 IRE WESCON
Convention Record, 96-104, IRE, New York.

