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ABSTRACT 

We have created a radial basis function network that allocates a 
new computational unit whenever an unusual pattern is presented 
to the network. The network learns by allocating new units and 
adjusting the parameters of existing units. If the network performs 
poorly on a presented pattern, then a new unit is allocated which 
memorizes the response to the presented pattern. If the network 
performs well on a presented pattern, then the network parameters 
are updated using standard LMS gradient descent. For predicting 
the Mackey Glass chaotic time series, our network learns much 
faster than do those using back-propagation and uses a comparable 
number of synapses. 

1 INTRODUCTION 
Currently, networks that perform function interpolation tend to fall into one of two 
categories: networks that use gradient descent for learning (e.g., back-propagation), 
and constructive networks that use memorization for learning (e.g., k-nearest neigh­
bors). 

Networks that use gradient descent for learning tend to form very compact repre­
sentations, but use many learning cycles to find that representation. Networks that 
memorize their inputs need to only be exposed to examples once, but grow linearly 
in the training set size. 

The network presented here strikes a compromise between memorization and gradi­
ent descent. It uses gradient descent for the "easy" input vectors and memorization 
for the "hard" input vectors. If the network performs well on a particular input 
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vector, or the particular input vector is already close to a stored vector, then the 
network adjusts its parameters using gradient descent. Otherwise, it memorizes the 
input vector and the corresponding output vector by allocating a new unit. The ex­
plicit storage of an input-output pair means that this pair can be used immediately 
to improve the performance of the system, instead of merely using that information 
for gradient descent. 

The network, called the resource-allocation network (RAN), uses units whose re­
sponse is localized in input space. A unit with a non-local response needs to undergo 
gradient descent, because it has a non-zero output for a large fraction of the training 
data. 

Because RAN is a constructive network, it automatically adjusts the number of 
units to reflect the complexity of the function that is being interpolated. Fixed-size 
networks either use too few units, in which case the network memorizes poorly, 
or too many, in which case the network generalizes poorly. Parzen windows and 
K-nearest neighbors both require a number of stored patterns that grow linearly 
with the number of presented patterns. With RAN, the number of stored patterns 
grows sublinearly, and eventually reaches a maximum. 

1.1 PREVIOUS WORK 

Previous workers have used networks with localized basis functions (Broomhead & 
Lowe, 1988) (Moody & Darken, 1988 & 89) (Poggio & Girosi, 1990). Moody has 
further extended his work by incorporating a hash table lookup (Moody, 1989). The 
hash table is a resource-allocating network where the values in the hash table only 
become non-zero if the entry in the hash table is activated by the corresponding 
presence of non-zero input probability. 

The RAN adjusts the centers of the Gaussian units based on the error at the output, 
like (Poggio & Girosi, 1990). Networks with centers placed on a high-dimensional 
grid, such as (Broomhead & Lowe, 1988) and (Moody, 1989), or networks that use 
unsupervised clustering for center placement, such as (Moody & Darken, 1988 & 
89) generate larger networks than RAN, because they cannot move the centers to 
increase the accuracy. 

Previous workers have created function interpolation networks that allocate fewer 
units than the size of training set. Cascade-correlation (Fahlman & Lebiere, 1990), 
SONN (Tenorio & Lee, 1989), and MARS (Friedman, 1988) all construct networks 
by adding additional units. These algorithms work well. The RAN algorithm 
improves on these algorithms by making the addition of a unit as simple as possible. 
RAN uses simple algebra to find the parameters of a new unit, while cascade­
correlation and MARS use gradient descent and SONN uses simulated annealing. 

2 THE ALGORITHM 
This section describes a resource-allocating network (RAN), which consists of a 
network, a strategy for allocating new units, and a learning rule for refining the 
network. 

2.1 THE NETWORK 

The RAN is a two-layer radial-basis-function network. The first layer consists of 
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units that respond to only a local region of the space of input values. The second 
layer linearly aggregates outputs from these units and creates the function that 
approximates the input-output mapping over the entire space. 

A simple function that implements a locally tuned unit is a Gaussian: 

Zj = L(Cjk - h)2, 

k 

Xj = exp( -Zj /wJ). 
(1) 

We use a C1 continuous polynomial approximation to speed up the algorithm, 
without loss of network accuracy: 

if z· < qw?' 
J J' 

otherwise; 
(2) 

where q = 2.67 is chosen empirically to make the best fit to a Gaussian. 

Each output of the network Yi is a sum of the outputs Xj, each weighted by the 
synaptic strength h ij plus a global polynomial. The Xj represent information about 
local parts of the space, while the polynomial represents global information: 

Yi = E hijXj + E Liklk + Ii· (3) 
j k 

The h ij Xj term can be thought of as a bump that is added or subtracted to the 
polynomial term Lk Likh + Ii to yield the desired function. 

The linear term is useful when the function has a strong linear component. In 
the results section, the Mackey-Glass equation was predicted with only a constant 
term. 

2.2 THE LEARNING ALGORITHM 

The network starts with a blank slate: no patterns are yet stored. As patterns are 
presented to it, the network chooses to store some of them. At any given point 
the network has a current state, which reflects the patterns that have been stored 
previously. 

The allocator may allocate a new unit to memorize a pattern. After the new unit 
is allocated, the network output is equal to the desired output f. Let the index of 
this new unit be n. 

The peak of the response of the newly allocated unit is set to the memorized input 
vector, 

(4) 

The linear synapses on the second layer are set to the difference between the output 
of the network and the novel output, 

(5) 
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The width of the response of the new unit is proportional to the distance from the 
nearest stored vector to the novel input vector, 

(6) 

where K is an overlap factor. As K grows larger, the responses of the units overlap 
more and more. 

The RAN uses a two-part memorization condition. An input-output pair (I, f) 
should be memorized if the input is far away from existing centers, 

III - Cne ares t II > oCt), (7) 

and if the difference between the desired output and the output of the network is 
large 

Ilf - y(l) I I > f. (8) 

Typically, f is a desired accuracy of output of the network . Errors larger than f 

are immediately corrected by the allocation of a new unit, while errors smaller than 
f are gradually repaired using gradient descent. The distance oCt) is the scale of 
resolution that the network is fitting at the tth input presentation. The learning 
starts with oCt) = 0max, which is the largest length scale of interest, typically the 
size of the entire input space of non-zero probability density. The distance oCt) 
shrinks until the it reaches Omin, which is the smallest length scale of interest. The 
network will average over features that are smaller than Omin. We used a function: 

6(t) = max(omax exp( -tiT), Omin), (9) 

where T is a decay constant. 

At first, the system creates a coarse representation of the function, then refines the 
representation by allocating units with smaller and smaller widths. Finally, when 
the system has learned the entire function to the desired accuracy and length scale, 
it stops allocating new units altogether. 

The two-part memorization condition is necessary for creating a compact network. 
If only condition (7) is used, then the network will allocate units instead of using 
gradient descent to correct small errors. If only condition (8) is used, then fine-scale 
units may be allocated in order to represent coarse-scale features, which is wasteful. 

By allocating new units the RAN eventually represents the desired function ever 
more closely as the network is trained. Fewer units are needed for a given accuracy 
if the first-layer synapses Cj 1:, the second-level synapses hij , and the parameters for 
the global polynomial'Yi and Lil: are adjusted to decrease the error: £ = lIil - fll2 
(Widrow & Hoff, 1960). We use gradient descent on the second-layer synapses to 
decrease the error whenever a new unit is not allocated: 

Ahij = a(1i - Yi)Xj, 

A'Yi = a(Ti - Yi), 

ALiI: = a(Ti - Yi)h. 

(10) 
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In addition, we adjust the centers of the responses of units to decrease the error: 

(11) 

Equation (11) is derived from gradient descent and equation (1). Empirically, equa­
tion (11) also works for the polynomial approximation (2). 

3 RESULTS 
One application of an interpolating RAN is to predict complex time series. As 
a test case, a chaotic time series can be generated with a nonlinear algebraic or 
differential equation. Such a series has some short-range time coherence, but long­
term prediction is very difficult. 

The RAN was tested on a particular chaotic time series created by the Mackey-Glass 
delay-difference equation: 

x(t - r) 
x(t + 1) = (1- b)x(t) + a ( )10' l+xt-r 

(12) 

for a = 0.2, b = 0.1, and r = 17. We trained the network to predict the value 
x(T + dT), given the values x(T), x(T - 6), x(T - 12), and x(T - 18) as inputs. 

The network was tested using two different learning modes: off-line learning with 
a limited amount of data, and on-line learning with a large amount of data. The 
Mackey-Glass equation has been learned off-line, by other workers, using the back­
propagation algorithm (Lapedes & Farber, 1987), and radial basis functions (Moody 
& Darken, 1989). We used RAN to predict the Mackey-Glass equations with the 
following parameters: a = 0.02, 400 learning epochs, 6max = 0.7, K, = 0.87 and 
6m in = 0.07 reached after 100 epochs. RAN was simulated using f = 0.02 and 
f = 0.05. In all cases, dT = 85. 

Figure 1 shows the efficiency of the various learning algorithms: the smallest, most 
accurate algorithms are towards the lower left. When optimized for size of network 
(f = 0.05), the RAN has about as many weights as back-propagation and is just 
as accurate. The efficiency of RAN is roughly the same as back-propagation, but 
requires much less computation: RAN takes approximately 8 minutes of SUN-4 
CPU time to reach the accuracy listed in figure 4, while back-propagation took 
approximately 30-60 minutes of Cray X-MP time. 

The Mackey-Glass equation has been learned using on-line techniques by hashing 
B-splines (Moody, 1989). We used on-line RAN using the following parameters; 
a = 0.05, 6max = 0.7, 6min = 0.07, K, = 0.87, and 6min reached after 5000 input 
presentations. Table 1 compares the on-line error versus the size of network for 
both RAN and the hashing B-spline (Moody, personal communication). In both 
cases, dT = 50. The RAN algorithm has similar accuracy to the hashing B-splines, 
but the number of units allocated is between a factor of 2 and 8 smaller. 

For more detailed results on the Mackey-Glass equation, see (Platt, 1991). 
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Figure 1: The error on a test set versus the size of the network. Back-propagation 
stores the prediction function very compactly and accurately, but takes a large 
amount of computation to form the compact representation. RAN is as compact 
and accurate as back-propagation, but uses much less computation to form its 
representation. 

Table 1: Comparison between RAN and hashing B-splines 

Method Number of Units Normalized RMS Error 

RAN, f = 0.05 50 0.071 
RAN, f = 0.02 143 0.054 

Hashing B-spline 
1 level of hierarchy 284 0.074 
Hashing B-spline 

2 levels of hierarchy 1166 0.044 

4 CONCLUSIONS 
There are various desirable attributes for a network that learns: it should learn 
quickly, it should learn accurately, and it should form a compact representation. 
Formation of a compact representation is particularly important for networks that 
are implemented in hardware, because silicon area is at a premium. A compact 
representation is also important for statistical reasons: a network that has too 
many parameters can overfit data and generalize poorly. 



720 Platt 

Many previous network algorithms either learned quickly at the expense of a com­
pact representation, or formed a compact representation only after laborious com­
putation. The RAN is a network that can find a compact representation with a 
reasonable amount of computation. 
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