
Learning Time-varying Concepts

Anthony Kuh
Dept. of Electrical Eng.
U. of Hawaii at Manoa
Honolulu, HI 96822
kuh@wiliki.eng.hawaii.edu

Thomas Petsche
Siemens Corp. Research
755 College Road East

Princeton, NJ 08540
petsche® learning. siemens.com

Ronald L. Rivest
Lab. for Computer Sci.

MIT
Cambridge, MA 02139

rivest@theory.lcs.mit.edu

Abstract

This work extends computational learning theory to situations in which concepts
vary over time, e.g., system identification of a time-varying plant. We have
extended formal definitions of concepts and learning to provide a framework
in which an algorithm can track a concept as it evolves over time. Given
this framework and focusing on memory-based algorithms, we have derived
some PAC-style sample complexity results that determine, for example, when
tracking is feasible. We have also used a similar framework and focused on
incremental tracking algorithms for which we have derived some bounds on
the mistake or error rates for some specific concept classes.

1 INTRODUCTION

The goal of our ongoing research is to extend computational learning theory to include
concepts that can change or evolve over time. For example, face recognition is complicat
ed by the fact that a persons face changes slowly with age and more quickly with changes
in make up, hairstyle, or facial hair. Speech recognition is complicated by the fact that
a speakers voice may change over time due to fatigue, illness, stress, or background
noise (Galletti and Abbott, 1989).

Time varying systems often appear in adaptive control or signal processing applications.
For example, adaptive equalizers adjust the receiver and transmitter to compensate for
changes in the noise on a transmission channel (Lucky et at, 1968). The kinematics of
a robot arm can change when it picks up a heavy load or when the motors and drive
train responses change due to wear. The output of a sensor may drift over time as the
components age or as the temperature changes.

183

184 Kuh, Petsche, and Rivest

Computational learning theory as introduced by Valiant (1984) can make some useful
statements about whether a given class of concepts can be learned and provide proba
bilistic bounds on the number of examples needed to learn a concept. Haussler, et al.
(1987), and Littlestone (1989) have also shown that it is possible to bound the number of
mistakes that a learner will make. However, while these analyses allow the concept to be
chosen arbitrarily, that concept must remain fixed for all time. Littlestone and Warmuth
(1989) considered concepts that may drift, but in the context of a different accuracy
measure than we use. Our research seeks explore further modifications to existing theory
to allow the analysis of performance when learning time-varying concept.

In the following, we describe two approaches we are exploring. Section 3 describes
an extension of the PAC-model to include time-varying concepts and shows how this
new model applies to algorithms that base their hypotheses on a set of stored examples.
Section 4 described how we can bound the mistake rate of an algorithm that updates its
estimate based on the most recent example. In Section 2 we define some notation and
terminology that is used in the remainder of the based.

2 NOTATION & TERMINOLOGY

For a dichotomy that labels each instance as a positive or negative example of a concept,
we can formally describe the model as follows. Each instance Xj is drawn randomly,
according to an arbitrary fixed probability distribution, from an instance space X. The
concept c to be learned is drawn randomly, according to an arbitrary fixed probability
distribution, from a concept class C. Associated with each instance is a label aj = c(Xj)
such that aj = 1 if Xj is a positive example and aj = 0 otherwise. The learner is presented
with a sequence of examples (each example is a pair (Xj, aj)) chosen randomly from X .
The learner must form an estimate, c, of c based on these examples.

In the time-varying case, we assume that there is an adversary who can change cover
time, so we change notation slightly. The instance Xt is presented at time t. The concept
Ct is active at time t if the adversary is using Ct to label instances at that time. The
sequence of t active concepts, Ct = {Cl' ... , Ct} is called a concept sequence of length t.
The algorithm's task is to form an estimate f t of the actual concept sequence Cr. i.e., at
each time t, the tracker must use the sequence of randomly chosen examples to form an
estimate c t of Ct. A set of length t concept sequences is denoted by C (t) and we call a
set of infinite length concept sequences a concept sequence space and denote it by C.

Since the adversary, if allowed to make arbitrary changes, can easily make the tracker's
task impossible, it is usually restricted such that only small or infrequent changes are
allowed. In other words, each C (t) is a small subset of ct.
We consider two different types of different types of "tracking" (learning) algorithms,
memory-based (or batch) and incremental (or on-line). We analyze the sample complexity
of batch algorithms and the mistake (or error) rate of incremental algorithms.

In t;e usual case where concepts are time-invariant, batch learning algorithms operate
in two distinct phases. During the first phase, the algorithm collects a set of training
examples. Given this set, it then computes a hypothesis. In the second phase, this
hypothesis is used to classify all future instances. The hypothesis is never again updated.
In Section 3 we consider memory-based algoritms derived from batch algorithms.

Learning Time-varying Concepts 185

When concepts are time-invariant, an on-line learning algorithm is one which constantly
modifies its hypothesis. On each iteration, the learner (1) receives an instance; (2) predicts
a label based on the current hypothesis; (3) receives the correct label; and (4) uses the
correct label to update the hypothesis. In Section 4, we consider incremental algorithms
based on on-line algorithms.

When studying learnability, it is helpful to define the Vapnik-Chervonenkis (VC) dimen
sion (Vapnik and Chervonenkis, 1971) of a concept class: VCdim(C) is the cardinality
of the largest set such that every possible labeling scheme is achieved by some concept
in C. Blumer et al. (1989) showed that a concept class is learnable if and only if the
VC-dimension is finite and derived an upper bound (that depends on the VC dimension)
for the number of examples need to PAC-learn a learnable concept class.

3 MEMORY-BASED TRACKING

In this section, we will consider memory-based trackers which base their current hypoth
esis on a stored set of examples. We build on the definition of PAC-learning to define
what it means to PAC-track a concept sequence. Our main result here is a lower bound
on the maximum rate of change that can be PAC-tracked by a memory-based learner.

A memory-based tracker consists of (a) a function WeE, 8); and (b) an algorithm .c that
produces the current hypothesis, Ct using the most recent W (E, 8) examples. The memory
based tracker thus maintains a sliding window on the examples that includes the most
recent W (E, 8) examples. We do not require that .c run in polynomial time.

Following the work of Valiant (1984) we say that an algorithm A PAC -tracks a concept
sequence space C' ~ C if, for any c E C', any distribution D on X, any E,8 > 0, and
access to examples randomly selected from X according to D and labeled at time t by
concept Ct; for all t sufficiently large, with t' chosen unifonnly at random between 1 and
t, it is true that

Pr(d(ctl , Ct l) ~ E) ~ 1 - 8.

The probability includes any randomization algorithm A may use as well as the random
selection of t' and the random selection of examples according to the distribution D,
and where d(c,c') = D(x : c(x) # c'(x)) is the probability that c and c' disagree on a
randomly chosen example.

Learnability results often focus on learners that see only positive examples. For many
concept classes this is sufficient, but for others negative examples are also necessary.
Natarajan (1987) showed that a concept class that is PAC-learnable can be learned using
only positive examples if the class is closed under intersection.

With this in mind, let's focus on a memory-based tracker that modifies its estimate
using only positive examples. Since PAC-tracking requires that A be able to PAC-learn
individual concepts, it must be true that A can PAC-track a sequence of concepts only if
the concept class is closed under intersection. However, this is not sufficient.

Observation 1. Assume C is closed under intersection. If positive examples are drawn
from CI E C prior to time to, and from C2 E C, CI ~ C2. after time to. then there exists an
estimate of C2 that is consistent with all examples drawn from CI.

The proof of this is straightforward once we realize that if CI ~ C2, then all positive

186 Kuh, Petsche, and Rivest

examples drawn prior to time to from CI are consistent with C2. The problem is therefore
equivalent to first choosing a set of examples from a subset of C2 and then choosing more
examples from all of C2 - it skews that probability distribution, but any estimate of C2

will include all examples drawn from CI.

Consider the set of closed intervals on [0,1], C = {[a,b] I 0 ~ a,b ~ I}. Assume that,
for some d > b, Ct = CI = [a,b] for all t ~ to and Ct = C2 = [a,d] for all t > to. All
the examples drawn prior to to, {xc: t < to}, are consistent with C2 and it would be nice
to use these examples to help estimate C2. How much can these examples help?

Theorem 1. Assume C is closed under intersection and VCdim(C) is finite; C2 ~ C;
and A has PAC learned CI E C at time to. Then,for some d such that VCdim(C2) ~ d ~
VCdim(C), the maximum number of examples drawn after time to required so that A can
PAC learn C2 E C is upper bounded by m(E, 8) = max (~log~, 8: log 1;)

In other words, if there is no prior information about C2, then the number of examples
required depends on VCdim(C). However, the examples drawn from CI can be used to
shrink the concept space towards C2' For example, when CI = [a,b] and C2 = [a,c],
in the limit where c~ = CI. the problem of learning C2 reduces to learning a one-sided
interval which has VC-dimension 1 versus 2 for the two-sided interval. Since it is unlikely
that c~ = Cit it will usually be the case that d > VCdim(C2).

In order to PAC-track c, most of the time A must have m(E, 8) examples consistent with
the current concept. This implies that w (E, 8) must be at least m (E, 8). Further, since the
concepts are changing, the consistent examples will be the most recent. Using a sliding
window of size m(e, 8), the tracker will have an estimate that is based on examples that
are consistent with the active concept after collecting no more than m (e, 8) examples
after a change.

In much of our analysis of memory-based trackers, we have focused on a concept se
quence space C,\ which is the set of all concept sequences such that, on average, each
concept is active for at least 1/), time steps before a change occurs. That is, if N (c, t) is
the number of changes in the firstt time steps of c, C,\ = {c : lim sUPC-400 N (c, t) /t <).}.
The question then is, for what values of). does there exist a PAC-tracker?

Theorem 2. Let.c be a memory-based tracker with W(E, 8) = m(E,8/2) which draws
instances labeled according to some concept sequence c E C,\ with each Ct E C and
VCdim(C) < 00. For any E > 0 and 8> 0, A can UPAC track C if). < !m(E, 8/2).

This theorem provides a lower bound on the maximum rate of change that can be tracked
by a batch tracker. Theorem 1 implies that a memory-based tracker can use examples
from a previous concept to help estimate the active concept. The proof of theorem 2
assumes that some of the most recent m(E, 8) examples are not consistent with Ct until
m (E, 8) examples from the active concept have been gathered. An algorithm that removes
inconsistent examples more intelligently, e.g., by using conflicts between examples or
information about allowable changes, will be able to track concept sequence spaces that
change more rapidly.

Learning Time-varying Concepts 187

4 INCREMENTAL TRACKING

Incremental tracking is similar to the on-line learning case, but now we assume that there
is an adversary who can change the concept such that Ct+l =fi Ct. At each iteration:

1. the adversary chooses the active concept Ct;

2. the tracker is given an unlabeled instance, Xt;

3. the tracker predicts a label using the current hypothesis: at = Ct-l (Xt);

4. the tracker is given the correct label at;

5. the tracker forms a new hypothesis: ct = .c(Ct-l, (Xt,at}).

We have defined a number of different types of trackers and adversaries: A prudent
tracker predicts that at = 1 if and only if Ct (Xt) = 1. A conservative tracker changes
its hypothesis only if at =fi at. A benign adversary changes the concept in a way that
is independent of the tracker's hypothesis while a malicious adversary uses information
about the tracker and its hypothesis to choose a Ct+l to cause an increase in the error
rate. The most malicious adversary chooses Ct+l to cause the largest possible increase in
error rate on average.

We distinguish between the error of the hypothesis formed in step 5 above and a mistake
made in step 3 above. The instantaneous error rate of an hypothesis is et = d (Ct, ct).
It is the probability that another randomly chosen instance labeled according to Ct will
be misclassified by the updated hypothesis. A mistake is a mislabeled instance, and we
define a mistake indicator function Mt = 1 if Ct (Xt) =fi Ct-l (Xt).

We define the average error rate Ct = t L:~=l et and the asymptotic error rate is c =
lim inft-+co Ct. The average mistake rate is the average value of the mistake indicator
function, J.Lt = t L:~=l M to and the asymptotic mistake rate is J.L = lim inft -+co J.Lt·

We are modeling the incremental tracking problems as a Markov process. Each state
of the Markov process is labeled by a triple (c, C, a), and corresponds to an iteration in
which C is the active concept, C is the active hypothesis, and a is the set of changes the
adversary is allowed to make given c. We are still in the process of analyzing a general
model, so the following presents one of the special cases we have examined.

Let X be the set of all points on the unit circle. We use polar coordinates so that
since the radius is fixed we can label each point by an angle B, thus X = [0, 27r).
Note that X is periodic. The concept class C is the set of all arcs of fixed length 7r
radians, i.e., all semicircles that lie on the unit circle. Each C E C can be written as
C = [7r(2B - 1) mod 27r, 27rB), where B E [0, 1). We assume that the instances are chosen
uniformly from the circle.

The adversary may change the concept by rotating it around the circle, however, the
maximum rotation is bounded such that, given Ct, Ct+l must satisfy d(ct+t, Ct) ~ "y. For
the uniform case, this is equivalent to restricting Bt+ 1 = Bt ± f3 mod 1, where ° ~ f3 ~
"y /2.
The tracker is required to be conservative, but since we are satisfied to lower bound the
error rate, we assume that every time the tracker makes a mistake, it is told the correct
concept. Thus, ct = Ct-l if no mistake is made, but Ct = Ct wherever a mistake is made.

188 Kuh, Petsche, and Rivest

The worst case or most malicious adversary for a conservative tracker always tries to
maximize the tracker's error rate. Therefore, whenever the tracker deduces Ct (Le. when
ever the tracker makes a mistake), the adversary picks a direction by flipping a fair
coin. The adversary then rotates the concept in that direction as far as possible on each
iteration. Then we can define a random direction function St and write

{
+ 1, w.p. 1/2 if Ct-l = Ct-l;

St = -1, w.p. 1/2 if Cl-l = Ct-l;

St-l, if Ct-l # Ct-l.

Then the adversary chooses the new concept to be (}t = (}t-l + Stl/2.

Since the adversary always rotates the concept by 1/2, there are 2/1 distinct concepts that
can occur. However, when (}(t + 1/1) = (}(t) + 1/2 mod 1, the semicircles do not overlap
and therefore, after at most 1/1 changes, a mistake will be made with probability one.
Because at most 1/1 consecutive changes can be made before the mistake rate returns
to zero, because the probability of a mistake depends only on (}t - (}~, and because of
inherent symmetries, this system can be modeled by a Markov chain with k = 1/1 states.
Each state Si corresponds to the case I(}t - Ot I = i I mod 1. The probability of a transition
from state Si to state Si+l is P(si+1lsi) = 1 - (i + Ih. The probability of a transition
from state Si to state So is P(sols;) = (i + Ih. All other transition probabilities are
zero. This Markov chain is homogeneous, irreducible, aperiodic, and finite so it has an
invariant distribution. By solving the balance equations, for I sufficiently small, we find
that

(1)

Since we assume that I is small, the probability that no mistake will occur for each of
k - 1 consecutive time steps after a mistake, P(sk-d, is very small and we can say that
the probability of a mistake is approximately P(so). Therefore, from equation I, for small
I' it follows that JLmaJicious ~ ..)2// 1r.

If we drop the assumption that the adversary is malicious, and instead assume the the
adversary chooses the direction randomly at each iteration, then a similar sort of analysis
yields that JLbenign = 0 (12/ 3).

Since the foregoing analysis assumes a conservative tracker that chooses the best hy
pothesis every time it makes a mistake, it implies that for this concept sequence space
and any conservative tracker, the mistake rate is 0(rl/2) against a malicious adversary
and 0(r2/3b) against a benign adversary. For either adversary, it can be shown that
c = JL -I·

5 CONCLUSIONS AND FURTHER RESEARCH

We can draw a number of interesting conclusions fonn the work we have done so far.
First, tracking sequences of concepts is possible when the individual concepts are learn
able and change occurs "slowly" enough. Theorem 2 gives a weak upper bound on the
rate of concept changes that is sufficient to insure that tracking is possible.

Learning Time-varying Concepts 189

Theorem 1 implies that there can be some trade-off between the size (VC-dimension)
of the changes and the rate of change. Thus, if the size of the changes is restricted,
Theorems 1 and 2 together imply that the maximum rate of change can be faster than for
the general case. It is significant that a simple tracker that maintains a sliding window
on the most recent set of examples can PAC-track the new concept after a change as
quickly as a static learner can if it starts from scratch. This suggests it may be possible
to subsume detection so that it is implicit in the operation of the tracker. One obviously
open problem is to determine d in Theorem 1, i.e., what is the appropriate dimension to
apply to the concept changes?

The analysis of the mistake and error rates presented in Section 4 is for a special case
with VC-dimension 1, but even so, it is interesting that the mistake and error rates are
significantly worse than the rate of change. Preliminary analysis of other concept classes
suggests that this continues to be true for higher VC-dimensions. We are continuing
work to extend this analysis to other concept classes, including classes with higher VC
dimension; non-conservative learners; and other restrictions on concept changes.

Acknowledgments

Anthony Kuh gratefully acknowledges the support of the National Science Foundation
through grant EET-8857711 and Siemens Corporate Research. Ronald L. Rivest grateful
ly acknowledges support from NSF grant CCR-8914428, ARO grant NOOOI4-89-J-1988,
and a grant from the Siemens Corporation.

References

Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth, M. (1989). Learnability and the
Vapnik-Chervonenkis dimension. Journal o/the Association/or Computing Machinery,
36(4):929-965.

Galletti, I. and Abbott, M. (1989). Development of an advanced airborne speech recog
nizer for direct voice input. Speech Technology, pages 60-63.

Haussler, D., Littlestone, N., and Warmuth, M. K. (1987). Expected mistake bounds for
on-line learning algorithms. (Unpublished).

Littlestone, N. (1989). Mistake bounds and logarithmic linear-threshold learning algo
rithms. Technical Report UCSC-CRL-89-11, Univ. of California at Santa Cruz.

Littlestone, N. and Warmuth, M. K. (1989). The weighted majority algorithm. In Pro
ceedings 0/ IEEE FOCS Conference, pages 256-261. IEEE. (Extended abstract only.).

Lucky, R. W., Salz, 1., and Weldon, E. 1. (1968). Principles 0/ Data Communications.
McGraw-Hill, New York.

Natarajan, B. K. (1987). On learning boolean functions. In Proceedings o/the Nineteenth
Annual ACM Symposium on Theory o/Computing, pages 296-304.

Valiant, L. (1984). A theory of the learnable. Communications o/the ACM, 27:1134-1142.
Vapnik, V. N. and Chervonenkis, A. Y. (1971). On the uniform convergence of relative

frequencies of events to their probabilities. Theory 0/ Probability and its Applications,
16:264-280.

