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Abstract 

We examine the ability of radial basis functions (RBFs) to generalize. We 
compare the performance of several types of RBFs. We use the inverse dy­
namics of an idealized two-joint arm as a test case. We find that without 
a proper choice of a norm for the inputs, RBFs have poor generalization 
properties. A simple global scaling of the input variables greatly improves 
performance. We suggest some efficient methods to approximate this dis­
tance metric. 

1 INTRODUCTION 

The Radial Basis Functions (RBF) approach to approximating functions consists of 
modeling an input-output mapping as a linear combination of radially symmetric 
functions (Powell, 1987; Poggio and Girosi, 1990; Broomhead and Lowe, 1988; 
Moody and Darken, 1989). The RBF approach has some properties which make 
it attractive as a function interpolation and approximation tool. The coefficients 
that multiply the different basis functions can be found with a linear regression. 
Many RBFs are derived from regularization principles which optimize a criterion 
combining fitting error and the smoothness of the approximated function. However, 
the optimality criteria may not always be appropriate, especially when the input 
variables have different measurement units and affect the output differently. A 
natural extension to RBFs is to vary the distance metric (equivalent to performing 
a linear transformation on the input variables). This can be viewed as changing 
the cost function to be optimized (Poggio and Girosi, 1990). We first use an exact 
interpolation approach with RBFs centered at the data in the training set. We 
then explore the effect of optimizing the distance metric for Gaussian RBFs using a 
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smaller number of functions than data in the training set. We also suggest and test 
different methods to approximate this metric for the case of Gaussian RBFs that 
work well for the two joint arm example that we examined. We refer the reader to 
several other studies addressing the generalization performance of RBFs (Franke, 
1982; Casdagli, 1989; Renals and Rohwer, 1989). 

2 EXACT INTERPOLATION APPROACH 

In the exact interpolation model the number of RBFs is equal to the number of 
experiences. The centers of the RBFs are chosen to be at the location of the 
experiences. We used an idealized horizontal planar two joint arm model with no 
friction and no noise (perfect measurements) to test the performance of RBFs: 

Tl O~ (It + 12 + 2m2cz~h cos O2 - 2m2Cy~11 sin ( 2) 

+O~(I2 + m2cz~h cos O2 - m2cy~h sin ( 2) 

-2hOl(j2(m2Cz~ sin O2 + m2Cy~ cos ( 2) 
·2 

-1102 (m2cz~ sin 02 + m2Cy~ cos (2) 

O~(m2cz~/l cos O2 - m2cy~/l sin O2 + 12) + O~I2 
·2 +It 01 (m2cz~ sin O2 + m2Cy~ cos ( 2 ) (1) 

where OJ,, OJ,, OJ, are the angular position, velocity and acceleration of joint i. 1i is 
the torque at joint i. Ii, mj" Ii, czi and cYi are respectively the moment of inertia, 
mass, length and the x and y components of the center of mass location of link 
i. The input vector is (01,02,Ol,(j2'O~,O~). The training and test sets are formed 
of one thousand random experiences each; uniformly distributed across the space 
of the inputs. The different inputs were selected from the following ranges: [-4, 4] 
for the joint angles, [-20, 20] for the joint angular velocities and [-100, 100] for the 
joint angular accelerations. For the exact interpolation case, we scaled the input 
variables such that the input space is limited to the six dimensional hypercube 
[-1,1]6. This improved the results we obtained. The torque to be estimated at 
each joint is modeled by the following equation: 

n p 

Tk(Xi) = LCkj¢(lIxi -xjll)+ LJtkjPf(Xi) (2) 
j=l j=l 

where Tk, k = 1,2, is the estimated torque at the kth joint, n is the number of 
experiences/RBFs, Xi is the 'l-th input vector, II . II is the Euclidean norm and 
Pt(·),j = 1, ... ,p, is the space of polynomials of order m. The polynomial terms 
are not always added and it was found that adding the polynomial terms by them­
selves does not improve the performance significantly, which is in agreement with 
the conclusion made by Franke (Franke, 1982). When a polynomial is present in 
the equation, we add the following extra constraints (Powell, 1987): 

n 

LCkjPr(Xj) = 0 i=l, ... ,p (3) 
j=l 
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Figure 1: Normalized errors for the different RBFs using exact interpolation. c2 is 
the width parameter when relevant. 

To find the coefficients Ckj and J-lkj , we have to invert a square matrix which 
is nonsingular for distinct inputs for the basis functions we considered (Micchelli, 
1986). We used the training set to find the parameters Ckj, j = 1, n, and when 
relevant J-lkj, j = 1,p, for the following RBFs: 

• Gaussians 4>( r) = exp( ~~2) 

• Hardy Multiquadrics [HMQ] 4>(r) = vr2 + c2 

• Hardy Inverse Multiquadrics [HIMQ] ¢(r) = vr21+c'J 

• Thin Plate Splines [TPS] ¢(r) = r 2 10g r 

• Cubic Splines [CS] ¢(r) = r3 

• Linear Splines [LS] ¢(r) = r 
where r = Ilxi - Xj II . For the last three RBFs, we added polynomials of different 
orders, subject to the constraints in equation 3 above. Since the number of inde­
pendent parameters is equal to the number of points in the training set, we can 
train the system so that it exactly reproduces the training set. We then tested its 
performance on the test set. The error was measured by equation 4 below: 

E = 2:~=1 2:?=1 (Tki - Tki)2 

2:~=1 2:?=1 Tli 
(4) 

The normalized error obtained on the test set for the different RBFs are shown 
in figure 1. The results for LS and CS shown in this figure are obtained after 
the addition of a first order polynomial to the RBFs. We also tried adding a 
third order polynomial for TPS. As shown in this figure, the normalized error was 
more sensitive to the width parameter (i.e. c2 ) for the Gaussian RBFs than for 
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Hardy multiquadrics and inverse multiquadrics. This is in agreement with Franke's 
observation (Franke, 1982). The best normalized error for any RBF that we tested 
was 0.338 for HMQ with a value of c2 = 4 . Also, contrary to our expectations and 
to results reported by others (Franke, 1982), the TPS with a third order polynomial 
had a normalized error of 0.5003. This error value did not change significantly when 
only lower order polynomials are added to the (r2 log r) RBFs. Using Generalized 
Cross Validation (Bates et ai., 1987) to optimize the tradeoff between smoothness 
and fitting the data, we got similar normalized error for TPS. 

3 GENERALIZED RBF 

The RBF approach has been generalized (Poggio and Girosi, 1990) to have ad­
justable center locations, fewer centers than data, and to use a different distance 
metric. Instead of using a Euclidean norm, we can use a general weighted norm: 

Ilxi - Xj II~ = (Xi - Xj )TWTW(Xi - Xj) (5) 
where W is a square matrix. This approach is also referred to as Hyper Basis 
Functions (Poggio and Girosi, 1990). The problem of finding the weight matrix 
and the location of the centers is nonlinear. We simplified the problem by only 
considering a diagonal matrix Wand fixing the locations of the centers of the RBFs. 
The center locations were chosen randomly and were uniformly distributed over the 
input space. We tested three different methods to find the different parameters for 
Gaussian RBFs that we will describe in the next three subsections. 

3.1 NONLINEAR OPTIMIZATION 

We used a Levenberg-Marquardt nonlinear optimization routine to find the coef­
ficients of the RBFs {Cd and the diagonal scaling matrix W that minimized the 
sum of the squares of the errors in estimating the training set. We were able to 
find a set of parameters that reduced the normalized error to less than 0.01 in both 
the training and the test sets using 500 Gaussian RBFs randomly and uniformly 
spaced over the input space. One disadvantage we found with this method is the 
possible convergence to local minima and the long time it takes to converge using 
general purpose optimization programs. The diagonal elements of the matrix W 
are shown in the L-M columns of table 1. As expected, (h has a very small scale 
for both joints compared to ()2, since (}l does not affect the output of either joint 
in the horizontal model described by equation 1. Also the scaling of ()2 is much 
larger than the scaling of the other variables. This suggests that the scaling could 
be dependent on both the range of the input variables as well as the sensitivity of 
the output to the different input variables. We found empirically that a formula 
of the form of equation 6 approximates reasonably well the scaling weights found 
using nonlinear optimization. 

IV'!, I k 
Wi! = II V' ! II -V;:::::E::::;::{(=Xi=-=t,::::;::;·) 2;:;::} 

(6) 

where II~~!I\ is the normalized average absolute value of the gradient of the correct 

model of the function to be approximated. The term J k normalizes the 
E{(.t:.-t.r~} 
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Table 1: Scaling Weights Obtained Using Different Methods. 

W L-M ALG. TRUE FUNC. GRAD. APPROX. 

Joint 1 Joint 2 Joint 1 Joint 2 Joint 1 Joint 2 
Wl1 (Ot) 0.000021 5.48237 e-06 0.000000 0.000000 0.047010 0.005450 
W22(02) 0.382014 0.443273 0.456861 0.456449 0.400615 0.409277 
W33(O·d 0.004177 0.0871921 0.005531 0.010150 0.009898 0.038288 
W44(~·?) 0.004611 0.000120948 0.007490 0.000000 0.028477 0.008948 
W55 (Od 0.000433 0.00134168 0.000271 0.000110 0.006365 0.002166 
W66(O~) 0.000284 0.000955884 0.000059 0.000116 0.000556 0.001705 

density of the input variables in each direction by taking into account the expected 
distances from the RBF centers to the data. The constant k in this equation 
is inversely proportional to the width of the Gaussian used in the RBF. For the 
inverse dynamics problem we tested, and using 500 Gaussian functions randomly 
and uniformly distributed over the entire input space, a k between 1 and 2 was found 
to be good and results in scaling parameters which approximate those obtained by 
optimization. The scaling weights obtained using equation 6 and based on the 
knowledge of the functions to be approximated are shown in the TRUE FUNC. 
columns of table 1. Using these weight values the error in the test set was about 
0.0001 

3.2 AVERAGE GRADIENT APPROXIMATION 

In the previous section we showed that the scaling weights could be approximated 
using the derivatives of the function to be approximated in the different directions. If 
we can approximate these derivatives, we can then approximate the scaling weights 
using equation 6. A change in the output D..y could be approximated by a first order 
Taylor series expansion as shown in equation 7 below: 

(7) 

We first scaled the input variables so that they have the same range, then selected 
all pairs of points from the training set that are below a prespecified distance (since 
equation 7 is only valid for nearby points), and then computed D..x, and D..y for 
each pair. We used least squares regression to estimate the values of ~Y. Using ux, 
the estimated derivatives and equation 6, we got the scaling weights shown in the 
last two columns of table 1. Note the similarity between these weights and the ones 
obtained using the nonlinear optimization or the derivatives of the true function. 
The normalized error in this case was found to be 0.012 for the training set and 
0.033 for the test set. One advantage of this method is that it is much faster than 
the nonlinear optimization method. However, it is less accurate. 
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Figure 2: Normalized error vs. the number of iterations using the recursive method 
with and without initial scaling. 

3.3 RECURSIVE METHOD 

Another possible method to approximate the RMS values of the derivatives is to 
first approximate the function using RBFs of "reasonable" widths and then use this 
first approximation to compute the derivatives which are then used to modify the 
Gaussian widths in the different directions. The procedure is then repeated. We 
used 100 RBFs with Gaussian units randomly and uniformly distributed to find the 
coefficients of the RBFs. We explored two different scalings of the input data. In the 
first case we used the raw data without scaling, and in the second case the different 
input variables were scaled so that they have the same range from [-1, 1]. The width 
of the Gaussians used as specified by the variance c2 was equal to 200 in the first 
case, and 2 in the second case. We then used the estimated values of the derivatives 
to change the width of the Gaussians in the different directions and iterated the 
procedure. The normalized error is plotted versus the number of iterations for both 
cases in figure 2. As shown in this figure, the test set error dropped to around 0.001 
in about only 4 iterations. This technique is also much faster than the nonlinear 
optimization approach. Also it can be easily made local, which is desirable if the 
dependence of the function to be approximated on the input variables changes from 
one region of the input space to the other. One disadvantage of this approach is 
that it is not guaranteed to converge especially if the initial approximation of the 
function is very bad. 

4 CONCLUSION 

In this paper we tested the ability of RBFs to generalize from the training set. 
We found that the choice of the distance metric used may be crucial for good 
generalization. For the problem we tested, a bad choice of a distance metric resulted 
in very poor generalization. However, the performance of Gaussian RBFs improved 
significantly if we optimized the distance metric. We also tested some empirical 
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methods for efficiently estimating this metric that worked well in our test problem. 
Additional work has to be done to identify the conditions under which the techniques 
we presented here mayor may not work. Although a simple global scaling of the 
input variables worked well in our test example, it may not work in general. One 
problem that we found when we optimized the distance metric is that the values 
of the coefficients Cj, become very large, even if we imposed a penalty on their 
values. The reason for this, we think, is that the estimation problem was close to 
singular. Choice of the training set and optimizing the centers of the RBFs may 
solve this problem. The recursive method we described could probably be modified 
to approximate a complete linear coordinate transformation and local scaling. 

Acknowledgments 

Support was provided under Office of Naval Research contract N00014-88-K-0321 
and under Air Force Office of Scientific Research grant AFOSR-89-0500. Support for 
CGA was provided by a National Science Foundation Engineering Initiation Award 
and Presidential Young Investigator Award, an Alfred P. Sloan Research Fellowship, 
the W. M. Keck Foundation Assistant Professorship in Biomedical Engineering, and 
a Whitaker Health Sciences Fund MIT Faculty Research Grant. 

References 

D. M. Bates, M. J. Lindstorm, G. Wahba and B. S. Yandel (1987) "GCVPACK 
- Routines for generalized cross validation". Commun. Statist.-Simulat. 16 (1): 
263-297. 

D. S. Broomhead and D. Lowe (1988) "Multivariable functional interpolation and 
adaptive networks". Complex Systems 2:321-323. 

M. Casdagli (1989) "Nonlinear prediction of chaotic time series". Physica D 35: 
335-356. 

R. Franke (1982) "Scattered data interpolation: Tests of some methods" . Math. 
Compo 38(5):181-200. 

C. A. Micchelli (1986) "Interpolation of scattered data: distance matrices and con­
ditionally positive definite functions". Constr. Approx. 2:11-22. 

J. Moody and C. Darken (1989) "Fast learning in networks of locally tuned pro­
cessing units". Neural Computation 1(2):281-294. 

T. Poggio and F. Girosi (1990) "Networks for approximation and learning". Pro­
ceedings of the IEEE 78(9):1481-1497. 

M. J. D. Powell (1987) "Radial basis functions for multivariable interpolation: A 
review". In J. C. Mason and M. G. Cox (ed.), Algorithms for Approximation, 143-
167. Clarendon Press, Oxford. 

S. Renals and R. Rohwer (1989) "Phoneme classification experiments using radial 
basis functions". In Proceedings of the International Joint Conference on Neural 
Networks, 1-462 - 1-467, Washington, D.C., IEEE TAB Neural Network Committee. 


