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Abstract 

Exact structure from motion is an ill-posed computation and therefore 
very sensitive to noise. In this work I describe how a qualitative shape 
representation, based on the sign of the Gaussian curvature, can be com­
puted directly from motion disparities, without the computation of an 
exact depth map or the directions of surface normals. I show that humans 
can judge the curvature sense of three points undergoing 3D motion from 
two, three and four views with success rate significantly above chance. A 
simple RBF net has been trained to perform the same task. 

1 INTRODUCTION 

When a scene is recorded from two or more different positions in space, e.g. by a 
moving camera, objects are projected into disparate locations in each image. This 
disparity can be used to recover the three-dimensional structure of objects that is 
lost in the projection process. The computation of structure requires knowledge 
of the 3D motion parameters. Although these parameters can themselves be com­
puted from the disparities, their computation presents a difficult problem that is 
mathematically ill-posed: small perturbations (or errors) in the data may cause 
large changes in the solution [9]. This brittleness, or sensitivity to noise, is a major 
factor limiting the applicability of a number of structure from motion algorithms in 
practical situations (Ullman, 1983). 

The problem of brittleness of the structure from motion algorithms that use the min­
imal possible information may be attacked through two different approaches. One 
involves using more data, either in the space domain (more corresponding points 
in each image frame, Bruss & Horn, 1981), or in the time domain (more frames, 
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Ullman, 1984). The other approach is to look for, instead of a general quantitative 
solution, a qualitative one that would still meet the main requirements of the task 
for which the computation is performed (e.g., object representation or navigation). 
This approach has been applied to navigation (e.g., Nelson & Aloimonos, 1988) and 
object recognition (e.g., Koenderink & van Doorn, 1976; Weinshall, 1989). 

Under perspective projection, the knowledge of the positions of 7 corresponding 
points in two successive frames is the theoretical lower limit of information nec­
essary to compute the 3D structure of an object that undergoes a general motion 
(Tsai & Huang, 1984). As mentioned above, acceptable performance of structure 
from motion algorithms on real, noisy images requires that a larger number of cor­
responding points be used. In contrast, the human visual system can extract 3D 
motion information using as few as 3 points in each of the two frames (Borjesson 
& von Hofsten, 1973). To what extent can object shape be recovered from such 
impoverished data? I have investigated this question experimentally (by studying 
the performance of human subjects) and theoretically (by analyzing the information 
available in the three-point moving stimuli). 

2 THEORETICAL SHORTCUTS 

The goal of the structure from motion computation is to obtain the depth map of 
a moving object: the value of the depth coordinate at each point in the 2D image 
of the object. The depth map can be used subsequently to build a representation 
of the object, e.g., for purposes of recognition. One possible object representation 
is the description of an object as a collection of generic parts, where each part is 
described by a few parameters. Taking the qualitative approach to vision described 
in the introduction, the necessity of having a complete depth map for building useful 
generic representations can be questioned. Indeed, one such representation, a map 
of the sign of the Gaussian curvature of the object's surface, can be computed 
directly (and, possibly, more reliably) from motion disparities. The knowledge 
of the sign of the Gaussian curvature of the surface allows the classification of 
surface patches as elliptic (convex/concave), hyperbolic (saddle point), cylindrical, 
or planar. Furthermore, the boundaries between adjacent generic parts are located 
along lines of zero curvature (parabolic lines). 

The basic result that allows the computation of the sign of the Gaussian curvature 
directly from motion disparities is the following theorem (see Weinshall, 1989 for 
details): 

Theorem 1 Let FOE denote the Focus Of Ezpansion - the location in the image 
towards (or away from) which the motion is directed. 

Pick three collinear points in one image and observe the pattern they form in a 
subsequent image. 

The sign of the curvature of these three points in the second image relative to the 
FOE is the same as the sign of the normal curvature of the 3D curve defined by 
these three points. 

The sign of the Gaussian curvature at a given point can be found without knowing 
the direction of the normal to the surface, by computing the curvature sign of point 
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Figure 1: Experiment 1: perception of curvature from three points in 3D translation. 
(a) Four naive subjects were shown two, three or four snapshots of the motion 
sequence. The subjects did not perceive the motion as translation. The total 
extent and the speed of the motion were identical in each condition. The three 
points were always collinear in the first frame. The back and forth motion sequence 
was repeated eight times, after which the subjects were required to decide on the 
sign of the curvature (see text). The mean performance, 62%, differed significantly 
from chance (t = 5.55, p < 0.0001). Furthermore, all subjects but one performed 
significantly above chance. (b) The effect of the number offrames was not significant 
(X2 = 1. 72, p = 0.42). Bars show ±1 standard error of the mean. 

triads in all directions around the point. The sign of the Gaussian curvature is 
determined by the number of sign reversals of the triad curvatures encountered 
around the given point. The exact location of the FOE is therefore not important. 

The sign operator described above has biological appeal, since the visual system 
can compute the deviation of three points from a straight line with precision in the 
hyperacuity range (that is, by an order of magnitude more accurately than allowed 
by the distance between adjacent photoreceptors in the retina). In addition, this 
feature must be important to the visual system, since it appears to be detected 
preattentively (in parallel over the entire visual field; see Fahle, 1990). 

It is difficult to determine whether the visual system uses such a qualitative strategy 
to characterize shape features, since it is possible that complete structure is first 
recovered, from which the sign of the Gaussian curvature is then computed. In the 
following experiments I present subjects with impoverished data that is insufficient 
for exact structure from motion (3 points in 2 frames). If subjects can perform the 
task, they have to use some strategy different from exact depth recovery. 

3 EXPERIMENT 1 

In the first experiment four subjects were presented with 120 moving rigid configu­
rations of three points. The number of distinct frames per configuration varied from 
2 to 4. The motion was translation only. Subjects had to judge whether the three 
points were in a convex or a concave configuration, namely, whether the broken 3D 
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line formed by the points was bent towards or away from the subject (figure 1a). 
The middle point was almost never the closest or the farthest one, so that relative 
depth was not sufficient for solving the problem. With only two-frame the stim­
ulus was ambiguous in that there was an infinity of rigid convex and concave 3D 
configurations of three points that could have given rise to the images presented. 
For these stimuli the correct answer is meaningless, and one important question is 
whether this inherent ambiguity affects the subjects' performance (as compared to 
their performance with 3 and 4 frames). 

The subjects' performance in this experiment was significantly better than chance 
(figure Ib). The subjects were able to recover partial information on the shape 
of the stimulus even with 2 frames, despite the theoretical impossibility of a full 
structure from motion computationl . Moreover, the number of frames presented in 
each trial had no significant effect on the error rate: the subjects performed just as 
well in the 2 frame trials as in the 3 and 4 frame trials (figure Ib). Had the subjects 
relied on the exact computation of structure from motion, one would expect a better 
performance with more frames (Ullman, 1984; Hildreth et al., 1989). 

One possible account (reconstructional) of this result is that subjects realized that 
the motion of the stimuli consisted of pure 3D translation. Three points in two 
frames are in principle sufficient to verify that the motion is translational and to 
compute the translation parameters. The next experiment renders this account 
implausible by demonstrating that the subjects perform as well when the stimuli 
undergo general motion that includes rotation as well as translatior~. 

Another possible (geometrical) account is that the human visual system incorporates 
the geometrical knowledge expressed by theorem 1, and uses this knowledge in 
ambiguous cases to select the more plausible answer. However, theorem 1 does not 
address the ambiguity of the stimulus that stems from the dependency of the result 
on the location of the Focus Of Expansion. Ifindeed some knowledge of this theorem 
is used in performing this task, the ambiguity has to be resolved by "guessing" the 
location of the FOE. The strategy consistent with human performance in the first 
experiment is assuming that the FOE lies in the general direction towards which 
the points in the image are moving. The next experiment is designed to check the 
use of this heuristic. 

4 EXPERIMENT 2 

This experiment was designed to clarify which of the two proposed explanations to 
the subjects' good performance in experiment 1 with only 2 frames is more plausible. 

First, to eliminate completely the cue to exact depth in a translational motion, 
the stimuli in experiment 2 underwent rotation as well as translation. The 3D 
motion was set up in such a manner that the projected 2D optical flow could not 
be interpreted as resulting from pure translational motion. 

Second, if subjects do use an implicit knowledge of theorem 1, the accuracy of their 
performance should depend on the correctness of the heuristic used to estimate 

II should note thal all the subjects were surprised by their good performance. They 
felt that the stimulus was ambiguous and that they were mostly guessing. 



360 Weinshall 

the location of the FOE as discussed in the previous section. This heuristic yields 
incorrect results for many instances of general 3D motion. In experiment 2, two 
types of 3-point 2-frame motion were used: one in which the estimation of the FOE 
using the above heuristic is correct, and one in which this estimation is wrong. 
If subjects rely on an implicit knowledge of theorem 1, their judgement should be 
mostly correct for the first type of motion, and mostly incorrect for the second type. 
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Figure 2: Experiment 2: three points in general motion. The same four subjects as 
in experiment 1 were shown two-frame sequences of back and forth motion that in­
cluded 3D translation and rotation. The mean performance when the FOE heuristic 
(see text) was correct, 71%, was significantly above chance (t = 5.71, p < 0.0001). 
In comparison, the mean performance when the FOE heuristic was misleading, 26%, 
was significantly below chance (t = -4.90, p < 0.0001). The degree to which the 
motion could be mistakenly interpreted as pure translation was uncorrelated with 
performance (,. = 0.04, F(I, 318) < 1). The performance in experiment 2 was sim­
ilar to that in experiment 1 (the difference was not significant X2 < 1). In other 
words, the performance was as good under general motion as under pure translation. 

Figure 2a describes the results of experiment 2. As in the first experiment, the 
subjects performed significantly above chance when the FOE estimation heuristic 
was correct. When the heuristic was misleading, they were as likely to be wrong 
as they were likely to be right in the correct heuristic condition. As predicted by 
the geometrical explanation to the first experiment, seeing general motion instead 
of pure translation did not seem to affect the performance. 

5 LEARNING WITH A NEURAL NETWORK 

Computation of qualitative structure from motion, outlined in section 2, can be 
supported by a biologically plausible architecture based on the application of a 
three-point hyperacuity operator, in parallel, in different directions around each 
point and over the entire visual field. Such a computation is particularly suitable 
to implementation by an artificial neural network. I have trained a Radial Ba­
sis Function (RBF) network (Moody & Darken, 1989; Poggio & Girosi, 1990) to 
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identify the sign of Gaussian curvature of three moving points (represented by a 
coordinate vector of length 6). After a supervised learning phase in which the net­
work was trained to produce the correct sign given examples of motion sequences, 
it consistently achieved a substantial success rate on novel inputs, for a wide range 
of parameters. Figure 3 shows the success rate (the percentage of correct answers) 
plotted against the number of examples used in the training phase. 
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Figure 3: The correct performance rate of the RBF implementation vs. the number 
of examples in the training set. 

6 SUMMARY 

I have presented a qualitative approach to the problem of recovering object structure 
from motion information and discussed some of its computational, psychophysical 
and implementational aspects. The computation of qualitative shape, as repre­
sented by the sign of the Gaussian curvature, can be performed by a field of simple 
operators, in parallel over the entire image. The performance of a qualitative shape 
detection module, implemented by an artificial neural network, appears to be similar 
to the performance of human subjects in an identical task. 
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