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Abstract 

Analog neural networks with feedback can be used to implement l(­

Winner-Take-All (KWTA) networks. In turn, KWTA networks can be 
used as decoders of a class of nonlinear error-correcting codes. By in­
terconnecting such KWTA networks, we can construct decoders capable 
of decoding more powerful codes. We consider several families of inter­
connected KWTA networks, analyze their performance in terms of coding 
theory metrics, and consider the feasibility of embedding such networks in 
VLSI technologies. 

1 INTRODUCTION: THE K-WINNER-TAKE-ALL 
NETWORK 

We have previously demonstrated the use of a continuous Hopfield neural network 
as a K-Winner-Take-All (KWTA) network [Majani et al., 1989, Erlanson and Abu­
Mostafa, 1988}. Given an input of N real numbers, such a network will converge 
to a vector of K positive one components and (N - K) negative one components, 
with the positive positions indicating the K largest input components. In addition, 
we have shown that the (~) such vectors are the only stable states of the system. 

One application of the KWTA network is the analog decoding of error-correcting 
codes [Majani et al., 1989, Platt and Hopfield, 1986]. Here, a known set of vectors 
(the codewords) are transmitted over a noisy channel. At the receiver's end of the 
channel, the initial vector must be reconstructed from the noisy vector. 
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If we select our codewords to be the (Z) vectors with J( positive one components 
and (N - K) negative one components, then the K'VTA neural network will perform 
this decoding task. Furthermore, the network decodes from the noisy analog vector 
to a binary codeword (so no information is lost in quantization of the noisy vector). 
Also, we have shown [Majani et al., 1989] that the K"VTA network will perform the 
optimal decoding, maximum likelihood decoding (MLD), if we assume noise where 
the probability of a large noise spike is less than the probability of a small noise spike 
(such as additive white Gaussian noise). For this type of noise, an MLD outputs 
the codeword closest to the noisy received vector. Hence, the most straightforward 
implementation of MLD would involve the comparison of the noisy vector to all the 
codewords. For large codes, this method is computationally impractical. 

Two important parameters of any code are its rate and minimum distance. The 
rate, or amount of information transmitted per bit sent over the channel, of this 
code is good (asymptotically approaches 1). The minimum distance of a code is 
the Hamming distance between the two closest codewords in the code. The mini­
mum distance determines the error-correcting capabilities of a code. The minimum 
distance of the KWTA code is 2. 

In our previous work, we have found that the K'VTA network performs optimal 
decoding of a nonlinear code. However, the small minimum distance of this code 
limited the system's usefulness. 

2 INTERCONNECTED KWTA NETWORKS 

In order to look for more useful code-decoder pairs, we have considered intercon­
nected K"VTA networks. 'Ve have found two interesting families of codes: 

2.1 THE HYPERCUBE FAMILY 

A decoder for this family of codes has m = ni nodes. 'Ve label the nodes Xl, X2, ••. Xi 

with X j E 1,2 ... n. K'VTA constraints are placed on sets of n nodes which differ 
in only one index. For example, {I, 1, 1, ... ,I}, {2, 1, 1, ... ,I}, {3, 1, 1, ... ,I}, ... , 
{n, 1, 1, ... ,I} are the nodes in one KWTA constraint. 

For a two-dimensional system (i = 2) the nodes can be laid out in an array where 
the K"VTA constraints will be along the rows and columns of the array. For the 
code associated with the two-dimensional system, we find that 

310gn 
rate ~ 1- 2n . 

The minimum distance of this code is 4. Experimental results show that the decoder 
is nearly optimal. 

In general, for an i-dimensional code, the minimum distance is 2i. The rate of these 
codes can be bounded only very roughly. 

We also consider implementing these decoders on an integrated circuit. Because 
of the high level of interconnectivity of these decoders and the simple processing 
required at each node (or neuron) we assume that the interconnections will dictate 
the chip's size. Using a standard model for VLSI area complexity, we determine 



Analog Neural Networks as Decoders 587 

that the circuit area scales as the square of the network size. Feature sizes of current 
mainstream technologies suggest that we could construct systems with 222 = 484 
(2-dimensional), 63 = 216 (3-dimensional) and 54 = 625 (4-dimensional) nodes. 
Thus, nontrivial systems could be constructed with current VLSI technology. 

2.2 NET-GENERATED CODES 

This family uses combinatorial nets to specify the nodes in the K\VTA constraints. 
A net on n2 points consists of parallel classes: Each class partitions the n 2 points 
into n disjoint lines each containing n points. Two lines from different classes 
intersect at exactly one point. 

If we impose a KWTA constraint on the points on a line, a net can be used to 
generate a family of code-decoder pairs. If n is the integer power of a prime number, 
we can use a projective plane to generate a net with (n + 1) classes. For example, 
in Table 1 we have the projective plane of order 2 (n = 2). A projective plane has 
n 2 + n + 1 points and n2 + n + 1 lines where each line has n + 1 points and any 2 
lines intersect in exactly one point. 

Table 1: Projective Plane of Order 2. Points are numbered for clarity. 

points: 
1 2 3 4 5 6 7 
1 1 1 

1 1 1 
1 1 1 

lines: 1 1 1 
1 1 1 

1 1 1 
1 1 1 

We can generate a net of 3 (i.e., n + 1) classes in the following way: Pick one line of 
the projective plane. \Vithout loss of generality, we select the first line. Eliminate 
the points in that line from all the lines in the projective plane, as shown in Table 2. 
Renumber the remaining n 2 + n + 1 - (n + 1) = n 2 points. These are the points of 
the net. The first class of the net is composed of the reduced lines which previously 
contained the first point (old label 1) of the projective plane. In our example, this 
class contains two lines: L1 consists of points 2 and 3, and L2 consists of points 1 
and 4. The remaining classes of the net are formed in a corresponding manner from 
the other points of the first line of the projective plane. 

If we use all (n + 1) classes to specify KWTA constraints, the nodes are over­
constrained and the network has no stable states. We can obtain n different codes 
by using 1,2, ... , up to n classes to specify constraints. (The code constructed with 
two classes is identical to the two-dimensional code in Section 2.1!) Experimentally, 
we have found that these decoders perform near-optimal decoding on their corre­
sponding code. A code constructed with i nets has a minimum distance of at least 
2i. Thus, a code of size n2 (i.e., the codewords contain n 2 bits) can be constructed 
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with minimum distance up to 2n. The rate of these codes in general can be bounded 
only roughly. 

We found that we could embed the decoder with a nets in an integrated circuit 
with width proportional to .lan3 , or area proportional to the cube of the number 
of processors. In a typical vLSI process, one could implement systems with 484 
(a = 2, n = 22), 81 (a = 3, n = 9) or 64 (a = 4, n = 8) nodes. 

3 SUMMARY 

We have simulated and analyzed analog neural networks which perform near­
optimal decoding of certain families of nonlinear codes. Furthermore, we have 
shown that nontrivial implementations could be constructed. This work is discussed 
in more detail in [Erlanson, 1991). 
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Table 2: Constructing a Net from a Projective Plane. 
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