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Abstract 

A novel unsupervised neural network for dimensionality reduction which 
seeks directions emphasizing multimodality is presented, and its connec­
tion to exploratory projection pursuit methods is discussed. This leads to 
a new statistical insight to the synaptic modification equations governing 
learning in Bienenstock, Cooper, and Munro (BCM) neurons (1982). 
The importance of a dimensionality reduction principle based solely on 
distinguishing features, is demonstrated using a linguistically motivated 
phoneme recognition experiment, and compared with feature extraction 
using back-propagation network. 

1 Introduction 

Due to the curse of dimensionality (Bellman, 1961) it is desirable to extract fea­
tures from a high dimensional data space before attempting a classification. How to 
perform this feature extraction/dimensionality reduction is not that clear. A first 
simplification is to consider only features defined by linear (or semi-linear) projec­
tions of high dimensional data. This class of features is used in projection pursuit 
methods (see review in Huber, 1985). 

Even after this simplification, it is still difficult to characterize what interesting 
projections are, although it is easy to point at projections that are uninteresting. 
A statement that has recently been made precise by Diaconis and Freedman (1984) 
says that for most high-dimensional clouds, most low-dimensional projections are 
approximately normal. This finding suggests that the important information in the 
data is conveyed in those directions whose single dimensional projected distribution 
is far from Gaussian, especially at the center of the distribution. Friedman (1987) 
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argues that the most computationally attractive measures for deviation from nor­
mality (projection indices) are based on polynomial moments. However they very 
heavily emphasize departure from normality in the tails of the distribution (Huber, 
1985). Second order polynomials (measuring the variance - principal components) 
are not sufficient in characterizing the important features of a distribution (see 
example in Duda & Hart (1973) p. 212), therefore higher order polynomials are 
needed. We shall be using the observation that high dimensional clusters trans­
late to multimodallow dimensional projections, and if we are after such structures 
measuring multimodality defines an interesting projection. In some special cases, 
where the data is known in advance to be bi-modal, it is relatively straightforward 
to define a good projection index (Hinton & Nowlan, 1990). When the structure 
is not known in advance, defining a general multi modal measure of the projected 
data is not straight forward, and will be discussed in this paper. 

There are cases in which it is desirable to make the projection index invariant 
under certain transformations, and maybe even remove second order structure (see 
Huber, 1985) for desirable invariant properties of projection indices) .. In such cases 
it is possible to make such transformations before hand (Friedman, 1987), and then 
assume that the data possesses these invariant properties already. 

2 Feature Extraction using ANN 

In this section, the intuitive idea presented above is used to form a statistically 
plausible objective function whose minimization will be those projections having a 
single dimensional projected distribution that is far from Gaussian. This is done 
using a loss function whose expected value leads to the desired projection index. 
Mathematical details are given in Intrator (1990). 

Before presenting this loss function, let us review some necessary notations and as­
sumptions. Consider a neuron with input vector x = (Xl, ... , :r N), synaptic weights 
vector m = (ml' ... , mN), both in RN , and activity (in the linear region) c = x . m. 
Define the threshold em = E[(x . m)2], and the functions ¢(c, em) = c2 - ~cem, 
¢(c, em) = c2 _ icem. The ¢ function has been suggested as a biologically plausible 
synaptic modification function that explains visual cortical plasticity (Bienenstock, 
Cooper and Munro, 1982). Note that at this point c represents the linear projection 
of x onto m, and we seek an optimal projection in some sense. 

We want to base our projection index on polynomial moments of low order, and 
to use the fact that bimodal distribution is already interesting, and any additional 
mode should make the distribution even more interesting. With this in mind, con­
sider the following family of loss functions which depend on the synaptic weight 
vector and on the input x; 

The motivation for this loss function can be seen in the following graph, which 
represents the ¢ function and the associated loss function Lm (x). For simplicity 
the loss for a fixed threshold em and synaptic vector m can be written as Lm(c) = 
-ic2(c - em), where c = (x· m). 
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Figure 1: The function ¢ and the loss functions for a fixed m and em. 

The graph of the loss function shows that for any fixed m and em, the loss is 
small for a given input x, when either (x .111.) is close to zero, or when (x . m) is 
larger than iem . Moreover, the loss function remains negative for (x· m) > iem , 

therefore, any kind of distribution at the right hand side of ~em is possible, and 
the preferred ones are those which are concentratt'd further away from ~em. 

We must still show why it is not possible that a minimizer of the average loss will be 
such that all the mass of the distribution will be concentrated in one of the regions. 
Roughly speaking, this can not happen because the threshold em is dynamic and 
depends on the projections in a nonlinear way, namely, em = E(x . m)2. This 
implies that em will always move itself to a stable point such that the distribution 
will not be concentrated at only one of its sides. This yields that the part of the 
distribution for c < ~em has a high loss, making those distributions in which the 
distribution for c < ~em has its mode at zero more plausible. 

The risk (expected value of the loss) is given by: 

Rm = -~ {E[(x .111.)3] - E2[(x· m?]}. 
3 

Since the risk is continuously differentiable, its minimization can be achieved via a 
gradient descent method with respect to m, namely: 

dm a 
-d t = - -;;;--Rm = J1 E[¢(x· m, em)Xi]. 

t V7ni 

The resulting differential equations suggest a modified version of the law governing 
synaptic weight modification in the BCM theory for learning and memory (Bienen­
stock, Cooper and Munro, 1982). This theory was presented to account for various 
experimental results in visual cortical plasticity. The biological relevance of the 
theory has been extensively studied (Soul et al., 1986; Bear et al., 1987; Cooper et 
aI., 1987; Bear et al., 1988), and it was shown that the theory is in agreement with 
the classical deprivation experiments (Clothioux et al., 1990). 

The fact that the distribution has part of its mass on both sides of ~em makes this 
loss a plausible projection index that seeks multimodalities. However, we still need 
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to reduce the sensitivity of the projection index to outliers, and for full generality, 
allow any projected distribution to be shifted so that the part of the distribution 
that satisfies c < ~em will have its mode at zero. The over-sensitivity to outliers 
is addressed by considering a nonlinear neuron in which the neuron's activity is 
defined to be C = q(x . m), where q usually represents a smooth sigmoidal function. 
A more general definition that would allow symmetry breaking of the projected 
distributions, will provide solution to the second problem raised above, and is still 
consistent with the statistical formulation, is c = q(x . m - a), for an arbitrary 
threshold a which can be found by using gradient descent as well. For the nonlinear 
neuron, em is defined to be em = E[q2(x . m)]. 

Based on this formulation, a network of Q identical nodes may be constructed. All 
the neurons in this network receive the same input and inhibit each other, so as 
to extract several features in parallel. A similar network has been studied in the 
context of mean field theory by Scofield and Cooper (1985). The activity of neuron 
k in the network is defined as Ck = q(x . mk - ak), where mk is the synaptic weight 
vector of neuron k, and ak is its threshold. The inhibited activity and threshold of 
the k'th neuron are given by Ck = Ck - 17 E}#k Cj, e~ = E[c~]. 
We omit the derivation of the synaptic modification equations which is similar to 
the one for a single neuron, and present only the resulting modification equations 
for a synaptic vector mk in a lateral inhibition network of nonlinear neurons: 

mk = -11 E{¢(Ck' e~:J(q'(Ck) -17 Lq'(Cj})x}. 
j#k 

The lateral inhibition network performs a direct search of Q-dimensional projections 
together, and therefore may find a richer structure that a stepwise approach may 
miss, e.g. see example 14.1 Huber (1985). 

3 Conlparison with other feature extraction nlethods 

When dealing with a classification problem, the interesting features are those that 
distinguish between classes. The network presented above has been shown to seek 
multimodality in the projected distributions, which translates to clusters in the 
original space, and therefore to find those directions that make a distinction between 
different sets in the training data. 

In this section we compare classification performance of a network that performs 
dimensionality reduction (before the classification) based upon multimodality, and 
a network that performs dimensionality reduction based upon minimization of mis­
classification error (using back-propagation with MSE criterion). This is done using 
a phoneme classification experiment whose linguistic motivation is described below. 
In the latter we regard the hidden units representation as a new reduced feature 
representation of the input space. Classification on the new feature space was done 
using back-propagation 1 

1 See Intrator (1990) for comparison with principal components feature extraction and 
with k-NN as a classifier 
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Consider the six stop consonants [p,k,t,b,g,dJ, which have been a subject of recent 
research in evaluating neural networks for phoneme recognition (see review in Lipp­
mann, 1989). According to phonetic feature theory, these stops posses several com­
mon features, but only two distinguishing phonetic features, place of articulation 
and voicing (see Blumstein & Lieberman 1984, for a review and related references 
on phonetic feature theory). This theory suggests an experiment in which features 
extracted from unvoiced stops can be used to distinguish place of articulation in 
voiced stops as well. It is of interest if these features can be found from a single 
speaker, how sensitive they are to voicing and whether they are speaker invariant. 

The speech data consists of 20 consecutive time windows of 32msec with 30msec 
overlap, aligned to the beginning of the burst. In each time window, a set of 22 
energy levels is computed. These energy levels correspond to Zwicker critical band 
filters (Zwicker, 1961). The consonant-vowel (CV) pairs were pronounced in isola­
tion by native American speakers (two male BSS and LTN, and one female JES.) 
Additional details on biologicalmotivatioll for the preprocessing, and linguistic mo­
tivation related to child language acquisition can be found in Seebach (1990), and 
Seebach and Intrator (1991). An average (over 25 tokens) of the six stop consonants 
followed by the vowel [aJ is presented in Figure 2. All the images are smoothened 
using a moving average. One can see some similarities between the voiced and 
unvoiced stops especially in the upper left corner of the image (high frequencies be­
ginning of the burst) and the radical difference between them in the low frequencies. 

Figure 2: An average of the six stop consonants followed by the vowel raj. 
Their order from left to right [paJ [baJ [kaJ [gal [taJ [da]. Time increases 
from the burst release on the X axis, and frequency increases on the Y axis. 

In the experiments reported here, 5 features were extracted from the 440 dimen­
sion original space. Although the dimensionality reduction methods were trained 
only with the unvoiced tokens of a single speaker, the classifier was trained on (5 
dimensional) voiced and unvoiced data from the other speakers as well. 

The classification results, which are summarized in table 1, show that the back­
propagation network does well in finding structure useful for classification of the 
trained data, but this structure is more sensitive to voicing. Classification results 
using a BCM network suggest that, for this specific task, structure that is less 
sensitive to voicing can be extracted, even though voic.ing has significant effects 
on the speech signal itself. The results also suggest that these features are more 
speaker invariant. 
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Place of Articulation Classification JB-P) 
B-P BCM 

BSS /p,k,t/ 100 100 
BSS /b,g,d/ 83.4 94.7 
LTN /p,k,t/ 95.6 97.7 
LTN /b,g,d/ 78.3 93.2 
JES (Both) 88.0 99.4 

Table 1: Percentage of correct classification of place of articulation in voiced 
and unvoiced stops. 

Figure 3 : Synaptic weight images ofthe 5 hidden units of back-propagation 
(top), and by the 5 BCM neurons (bottom). 

The difference in performance between the two feature extractors may be partially 
explained by looking at the synaptic weight vectors (images) extracted by both 
method: For the back-propagation feature extraction it can be seen that although 
5 units were used, fewer number of features were extracted. One of the main 
distinction between the unvoiced stops in the training set is the high frequency burst 
at the beginning of the consonant (the upper left corner). The back-propagation 
method concentrated mainly on this feature, probably because it is sufficient to base 
the recognition of the training set on this feature, and the fact that training stops 
when misclassification error falls to zero. On the other hand, the BCM method does 
not try to reduce the misclassificaion error and is able to find a richer, linguistically 
meaningful structure, containing burst locations and format tracking of the three 
different stops that allowed a better generalization to other speakers and to voiced 
stops. 

The network and its training paradigm present a different approach to speaker 
independent speech recognition. In this approach the speaker variability problem 
is addressed by training a network that concentrates mainly on the distinguishing 
features of a single speaker, as opposed to training a network that concentrates on 
both the distinguishing and common features, on multi-speaker data. 
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