
Relaxation Networks for Large Supervised Learning Problems

Joshua Alspector Robert B. Allen Anthony Jayakumar
Torsten Zeppenfeld and Ronny Meir

Bellcore
Morristown, NJ 07962-1910

Abstract
Feedback connections are required so that the teacher signal on the output
neurons can modify weights during supervised learning. Relaxation methods
are needed for learning static patterns with full-time feedback connections.
Feedback network learning techniques have not achieved wide popularity
because of the still greater computational efficiency of back-propagation. We
show by simulation that relaxation networks of the kind we are implementing in
VLSI are capable of learning large problems just like back-propagation
networks. A microchip incorporates deterministic mean-field theory learning as
well as stochastic Boltzmann learning. A multiple-chip electronic system
implementing these networks will make high-speed parallel learning in them
feasible in the future.

1. INTRODUCTION

For supervised learning in neural networks, feedback connections are required so that the
teacher signal on the output neurons can affect the learning in the network interior. Even
though back-propagation[l] networks are feedforward in processing, they have implicit
feedback paths during learning for error propagation. Networks with explicit, full-time
feedback paths can perform pattern completion[2] and can have interesting temporal and
dynamical properties in contrast to the single forward pass processing of multilayer
perceptrons trained with back-propagation or other means. Because of the potential for
complex dynamics, feedback networks require a reliable method of relaxation for
learning and retrieval of static patterns. The Boltzmann machine[3] uses stochastic
settling while the mean-field theory (MFT) version[4] [5] uses a more computationally
efficient deterministic technique.

Neither of these feedback network learning techniques has achieved wide popularity
because of the greater computational efficiency of back-propagation. However, this is
likely to change in the near future because the feedback networks will be implemented in
VLSI[6] making them available for learning experiments on high-speed parallel hardware.

In this paper, we therefore raise the following questions: whether these types of learning
networks have the same representational and learning power as the more thoroughly
studied back-propagation methods, how learning in such networks scales with problem
size, and whether they can solve usefully large problems. Such questions are difficult to

1015

1016

answer with computer simulations because of the large amount of computer time
required compared to back-propagation, but, as we show, the indications are promising.

2. SIMULATIONS

2.1 Procedure

In this section, we compare back-propagation, Boltzmann machine, and MFf networks
on a variety of test problems. The back-propagation technique performs gradient descent
in weight space by differentiation of an objective function, usually the error,

E = L (st - Sk-)2

outputs k

where st is the target output and Sk- is the actual output. We choose to use the function

G = L [stlog(stlsk) + (1-st)IOg[(1-Sk+)/(1-sk-)]] (1)
outputs k

for a more direct comparison to the Boltzmann machine[7] which has

G = L pt1og(Pg+lpg) (2)
global states g

where P g is the probability of a global state.

Individual neurons in the Boltzmann machine have a probabilistic decision' rule such that
neuron k is in state Sk = I with probability

I
(3) Pi = 1 +e -net.tT

where neti = LWijSj is the net input to each neuron and T is a parameter that acts like
j

temperature in a physical system and is represented by the noise term in Eq. (4), which
follows. In the relaxation models, each neuron performs the activation computation

Si = f (gain* (neti +noisei » (4)

where f is a monotonic non-linear function such as tanh. In simulations of the
Boltzmann machine, this is a step function corresponding to a high value of gain. The
noise is chosen from a zero mean gaussian distribution whose width is proportional to the
temperature. This closely approximates the distribution in Eq. (3) and matches our
hardware implementation, which supplies uncorrelated noise to each neuron. The noise
is slowly reduced as annealing proceeds. For MFf learning, the noise is zero but the
gain term has a finite value proportional to liT taken from the annealing schedule. Thus
the non-linearity sharpens as 'annealing' proceeds.

The network is annealed in two phases, + and -, corresponding to clamping the outputs
in the desired state and allowing them to run free at each pattern presentation. The
learning rule which adjusts the weights Wij from neuron j to neuron i is

L\wij=sgn[(SjSjt-(SjSj)-]' (5)

Note that this measures the instantaneous correlations after annealing. For both phases
each synapse memorizes the correlations measured at the end of the annealing cycle and
weight adjustment is then made, (i.e., online). The sgn matches our hardware

implementation which changes weights by one each time.

2.2 Scaling

To study learning time as a function of problem size, we chose as benchmarks the parity
and replication (identity) problems. The parity problem is the generalization of
exclusive-OR for arbitrary input size, n. It is difficult because the classification regions
are disjoint with every change of input bit, but it has only one output. The goal of the
replication problem is for the output to duplicate the bit pattern found on the input after
being transformed by the hidden layer. There are as many output neurons as input. For
the replication problem, we chose the hidden layer to have the same number of neurons
as the input layer, while for parity we chose the hidden layer to have twice the number as
the input layer.

For back-propagation simulations, we used a learning rate of 0.3 and zero momentum.
For MFT simulations, we started at a high temperature of T hi = K (1.4)10 ((ranin) where
K = 1-10. We annealed in 20 steps dividing the temperature by 1.4 each time. The
janin parameter is the number of inputs from other neurons to a neuron in the hidden
layer. We did 3 neuron update cycles at each temperature. For Boltzmann, we increased
this to 11 updates because of the longer equilibration time. We used high gain rather
than strictly binary units because of the possibility that the binary Boltzmann units would
have exactly zero net input making annealing fruitless.

Parity Comparison Replication Comparison

105 104

~ ~ 104 - __ MFT
__ MFT

-o--1lZ 10) -o--1lZ
,

_ cycles ! I
1

103 • cycles

102 -- _>_n.

102

o 10
o 10

Input bits Input 8it~

Figure 1. Scaling of Parity (1 a) and Replication (1 b) Problem with Input Size

Fig. la plots the results of an average of 10 runs and shows that the number of patterns
required to learn to 90% correct for parity scales as an exponential in n for all three
networks. This is not surprising since the training set size is exponential and no
constraints were imposed to help the network generalize from a small amount of data.
An activation range of -1 to 1 was used on both this problem and the replication problem.
There is no appreciable difference in learning as a function of patterns presented. Actual

1017

1018 Alspector, Allen, Jayakumar, Zeppenfeld, and Meir

computer time is larger by an additional factor of n 2 to account for the increase in the
number of connections. Direct parallel implementation will reduce this additional factor
to less than n . Computer time for MFr learning was an additional factor of 10 slower
than back-propagation and stochastic Boltzmann learning was yet another factor of 10
slower. The hardware implementation will make these techniques roughly equal in speed
and far faster than any simulation of back-propagation. Fig. Ib shows analogous results
for the replication problem.

2.3 NETtalk

As an example of a large problem, we chose the NETtalk[8] corpus with 20,000 words.
Fig. 2 shows the learning curves for back-propagation, Boltzmann, and :MFT learning.
An activation range of 0 to 1 gave the best results on this problem, possibly due to the
sparse coding of text and phonemes. We can see that back-propagation does better on
this problem which we believe may be due to the ambiguity in mapping letters to
multiple phonemic outputs.

0.8

0.6

fraction
oorrect

0.4

0.2

o

o

----r --{)-BP

I ~BZ
i
i .. _ .. __ --.. + ········1 ··· r _

!
i ~MFT(inc) j

!
;
I ,

! i I + ' Hi • j t·

! I

4.000 104 8.000 104

cycles

Figure 2. Learning Curves for NETtalk

1.000105

2.4 Dynamic Range Manipulation

For all problems, we checked to see if reducing the dynamic range of the weights to 5
bits, equivalent to our VLSI implementation, would hinder learning. In most cases, there
was no effect. Dynamic range was a limitation for the two largest replication problems
with MFr. By adding an occasional global decay which decremented the absolute value
of the weights, we were able to achieve good learning. Our implementation is capable of
doing this. There was also a degradation of performance on the back-propagation
version of the parity problem which took about a factor of three longer to learn with a 5
bit weight range.

3. VLSI IMPLEMENTATION

The previous section shows that relaxation networks are as capable as back-propagation
networks of learning large problems even though they are slower in computer
simulations. We are, however, implementing these feedback networks in VLSI which
will speed up learning by many orders of magnitude. Our choice of learning technique
for implementation is due mainly to the local learning rule which makes it much easier to
cast these networks into electronics than back-propagation.

Figure 3. Photo of 32-Neuron Bellcore Learning Chip

Fig. 3 shows a microchip which has been fabricated. It contains 32 neurons and 992
connections (496 bidirectional synapses). On the extreme right is a noise generator
which supplies 32 uncorrelated pseudo-random noise sources [91 to the neurons to their
left. These noise sources are summed along with the weighted post-synaptic signals from
other neurons at the input to each neuron in order to implement the simulated annealing
process of the stochastic Boltzmann machine. The neuron amplifiers implement a non
linear activation function which has variable gain to provide for the gain sharpening
fur.ction of the MFT technique. The range of neuron gain can also be adjusted to allow
for scaling in summing currents due to adjustable network size.

Most of the area is occupied by the synapse array. Each synapse digitally stores a weight
ranging from -15 to +15 as 4 bits plus a sign. It multiples the voltage input from the
presynaptic neuron by this weight to output a current. One conductance direction can be
disconnected so that we can experiment with asymmetric networks in accordance with
our recent findings[lOl. Although the synapses can have their weights set externally, they
are designed to be adaptive. They store correlations using the local learning rule of Eq.

1019

1020 Alspector, Allen, Jayakumar, Zeppenfeld, and Meir

(5) and adjust their weights accordingly.

Although the chip is still being tested, some measurements can be reported. Fig. 4a
shows a family of transfer functions of a neuron, showing how the gain is continually
adjustable by varying a control voltage. Fig. 4b shows the transfer function of a synapse
as different weights are loaded. The input linear range is about 2 volts.

Measured Neuron Transfer Function Measured synapse transfer function

V
~--garn

_-·11

_-- ·7

~-- '!

~- 11

15

~ ~~~~~~~~~~~~~~~

-200 ·100 0 100 200 300 D.S u 2 2S 3 3.S
Ir'4XJI curent (pAl Input voltage (VI

Figure 4. Transfer Functions of Electronic Neuron and Synapse

Fig. 5 shows two different neuron outputs with a decreasing noise signal added in. The
upper trace shows a neuron driven by a function generator while the center trace shows
an undriven neuron. The lower trace is the noise control voltage common to all neurons.

The chip is designed to be cascaded with other similar chips in a board-level system
which can be accessed by a computer. The nodes which sum current from synapses for
net input into a neuron are available externally for connection to other chips and for
external clamping of neurons or other external input. We expect to be able to present
roughly 100,000 patterns per second to the chip for learning as was determined from a
previous prototype system[6] that was not cascadable. This speed will not be strongly
affected by the increased network size of a multiple-chip system because of the inherent
parallelism whereby each neuron and synapse updates its own state.

4. CONCLUSION

We have shown by simulation that relaxation networks of the kind we are implementing
are as capable of learning large problems as back-propagation networks. A multiple-Chip
electronic system implementing these networks will make high-speed parallel learning in
them feasible in the future.

Relaxation Networks for Large Supervised Learning Problems 1021

Figure 5. Neuron Signals in the Presence of Noise Generator Input

REFERENCES

1. D.E. Rumelhart, G.E. Hinton, & R.1. Williams, "Learning Internal Representations by Error
Propagation", in Parallel Distributed Processing: Explorations in the Microstructure of
Cognition. Vol. 1: Foundations, D.E. Rumelhart & 1.L McClelland (eds.), MIT Press,
Cambridge, MA (1986), p. 318.

2.1.1. Hopfield, "Neural Networks and Physical Systems with Emergent Collective
Computational Abilities", Proc. Natl. Acad. Sci. USA, 79,2554-2558 (1982).

3. D.H. Ackley, G.E. Hinton, & T.l. Sejnowski, "A Learning Algorithm for Boltzmann
Machines", Cognitive Science 9 (985) pp. 147-169.

4. C. Peterson & J.R. Anderson, "A Mean Field Learning Algorithm for Neural Networks",
Complex Systems, 1:5, 995-1019, (1987).

5. G. Hinton, "Detenninistic Boltzmann Learning Perfonns Steepest Descent in Weight-Space",
Neural Computation, 1, 143-150 (1989).

6.1. Alspector, B. Gupta, & R.B. Allen, "Perfonnance of a Stochastic Learning Microchip" in
Advances in Neural Information Processing Systems edited by D. Tourctzky (Morgan
Kaufmann, Palo Alto), pp. 748-760. (1989).

7.1.1. Hopfield, "Learning Algorithms and Probability Distributions in Feed-Forward and Feed
Back networks", Proc. Natl. Acad. Sci. USA, 84, 8429-8433 (1987).

8. T.l. Sejnowski & C.R. Rosenberg, "Parallel Networks that Learn to Pronounce English Text",
Complex Systems, 1, 145-168 (1987).

9.1. Alspector, 1.W. Gannett, S. Haber, M.B. Parker, & R. Chu, "A VLSI-Efficient Technique for
Generating Multiple Uncorrclated Noise Sources and Its Application to Stochastic Neural
Networks", IEEE Trans. Circuits & Systems, 38, 109, (Jan., 1991).

10. R.B. Allen & 1. Alspector, "Learning of Stable States in Stochastic Asymmetric Networks",
IEEE Trans. Neural Networks. 1,233-238, (1990).

