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Abstract 

This paper studies dynamical aspects of neural systems with delayed neg­
ative feedback modelled by nonlinear delay-differential equations. These 
systems undergo a Hopf bifurcation from a stable fixed point to a sta­
ble limit cycle oscillation as certain parameters are varied. It is shown 
that their frequency of oscillation is robust to parameter variations and 
noisy fluctuations, a property that makes these systems good candidates 
for pacemakers. The onset of oscillation is postponed by both additive 
and parametric noise in the sense that the state variable spends more time 
near the fixed point than it would in the absence of noise. This is also the 
case when noise affects the delayed variable, i.e. when the system has a 
faulty memory. Finally, it is shown that a distribution of delays (rather 
than a fixed delay) also stabilizes the fixed point solution. 

1 INTRODUCTION 

In this paper, we study the dynamics of a class of neural delayed feedback models 
which have been used to understand equilibrium and oscillatory behavior in recur­
rent inhibitory circuits (Mackey and an der Heiden, 1984; Plant, 1981; Milton et 
al., 1990) and brainstem reflexes such as the pupil light reflex (Longtin and Milton, 
1989a,b; Milton et al., 1989; Longtin et al., 1990; Longtin, 1991) and respiratory 
control (Glass and Mackey, 1979). These models are framed in terms of first-order 
nonlinear delay-differential equations (DDE's) in which the state variable may rep­
resent, e.g., a membrane potential, a mean firing rate of a population of neurons or 
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a muscle activity. For example, the negative feedback dynamics of the human pupil 
light reflex have been shown to be appropriately modelled by the following equa­
tion for pupil area (related to the activity of the iris muscles through the nonlinear 
monotonically decreasing function g(A) ) (see Longtin and Milton, 1989a,b): 

dg(A) dA(t) (A) = I [let - T)A(t - T)] 
dA dt + o:g , n ¢ (I) 

let) is the external light intensity and ¢ is the retinal light flux below which no 
pupillary response occurs. The left hand side of Eq.(I) governs the response of the 
system to the state-dependent forcing (i.e. stimulation) embodied in the term on 
the right-hand side. The delay T is essential to the understanding of the dynamics 
of this reflex. It accounts for the fact that the iris muscles move in response to the 
retinal light flux variations occurring'" 300 msec earlier. 

2 FOCUS AND MOTIVATION 

For the sake of discussion, we shall focus on the following prototypical model of 
delayed negative feedback 

d~~t) + o:x(t) = f(jj; x(t - T» (2) 

where jj is a vector of parameters and f is a monotonically decreasing function. 
This equation typically exhibits a Hopf bifurcation (i.e. a qualitative change in 
dynamics from a stable equilibrium solution to a stable limit cycle oscillation) as 
the slope of the feedback function or the delay are increased passed critical values. 

Autonomous (as opposed to externally forced) oscillations are frequently observed 
in real neural delayed feedback systems which suggests that these systems may 
exhibit a Hopf bifurcation. Further, it is clear that these systems operate despite 
noisy environmental fluctuations. A clear understanding of the properties of these 
systems can reveal useful information about their structure and the origin of the 
"noisy" sources, as well as enable us to extract general functioning principles for 
systems organized according to this scheme. 

We now focus our attention on three different dynamical aspects of these systems: 
I) the stability of the oscillation frequency and amplitude to parameter variations 
and to noise; 2) the postponement of oscillation onset due to noise; and 3) the 
stabilization of the equilibrium behavior in the more realistic case involving a dis­
tribution of delays rather than a single fixed delay. 

3 FREQUENCY AND AMPLITUDE 

Under certain conditions, the neural delayed feedback system will settle onto equi­
librium behavior after an initial transient. Mathematically, this corresponds to the 
fixed point solution x· of Eq.(2) obtained by setting z = O. A supercritical Hopf 
bifurcation occurs in Eq.(2) when the slope of the feedback function at this fixed 

point ~ I exceeds some value /co called the bifurcation value. It can also occur 
z· 
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when the delay exceeds a critical value. The case where the parameter a increases 
is particularly interesting because the system can undergo a Hopf bifurcation at 
a = al followed by a restabilization of the fixed point through a reverse Hopf 
bifurcation at a = a2 > al (see also Mackey, 1979). 

Numerical simulations of Eq.(2) around the Hopf bifurcation point ko reveal that 
the frequency is relatively constant while the amplitude Ampl grows as Jk - ko . 

However, in oscillatory time series from real neural delayed feedback systems, the 
frequency and amplitude fluctuate near the bifurcation point, with relative ampli­
tude fluctuations being generally larger than relative frequency fluctuations. This 
point has been illustrated using data from the human pupil light reflex whose feed­
back gain is under experimental control (see Longtin, 1991; Longtin et al., 1990). 
In the case of the pupil light reflex, the variations in the mean and standard devia­
tion of amplitude and period accompanying increases in the bifurcation parameter 
(the external gain) have been explained in the hypothesis that "neural noise" is 
affecting the deterministic dynamics of the system. This noise is strongly amplified 
near the bifurcation point where the solutions are only weakly stable (Longtin et 
al., 1990). Thus the coupling of the noise to the system is most likely responsible 
for the aperiodicity of the observed data. 

The fact that the frequency is not significantly affected by the noise nor by variation 
of the bifurcation parameter (especially in comparison to the amplitude fluctua­
tions) suggests that neural delayed feedback circuits may be ideally suited to serve 
as pacemakers. The frequency stability in regulatory biological systems has previ­
ously been emphasized by Rapp (1981) in the context of biochemical regulation. 

4 STABILIZATION BY NOISE 

In the presence of noise, oscillations can be seen in the solution of Eq.(2) even 
when the bifurcation value is below that at which the deterministic bifurcation 
occurs. This does not mean however that the bifurcation has occurred, since these 
oscillations simply become more and more prominent as the bifurcation parameter is 
increased, and no qualitative change in the solution can be seen. Such a qualitative 
change does occur when the solution is viewed from a different standpoint. One 
can in fact construct a histogram of the values taken on by the solution of the 
model differential equation (or by the data: see Longtin, 1991). The value of this 
(normalized) histogram at a given point in the state space (e.g. of pupil area values) 
provides a measure of the fraction of the time spent by the system in the vicinity 
of this point . The onset of oscillation can then be detected by a qualitative change 
in this histogram, specifically when it goes from unimodal to bimodal (Longtin et 
al., 1990). The distance between the two humps in the bimodal case is a measure 
of the limit cycle amplitude. For short time series however (as is often the case in 
neurophysiology), it is practically impossible to resolve this distance and thus to 
ascertain whether a Hopf bifurcation has occurred. 

Intensive simulations of Eq.(2) with either additive noise (i.e. added to Eq.(2)) or 
parametric noise (e.g. on the magnitude of the feedback function) reveal that the 
statistical limit cycle amplitude (the distance between the two humps or "order 
parameter") is smaller than the amplitude in the absence of noise (Longtin et al., 
1990). The bifurcation diagram is similar to that in Figure 1. This implies that the 
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solution spends more time near the fixed point, i.e. that the fixed point is stabilized 
by the noise (i.e . in the absence of noise, the limit cycle is larger and the system 
spends less time near the unstable fixed point). In other words, the onset of the 
Hopf bifurcation is postponed in the presence of these types of noise. Hence the 
noise level in a neural system, whatever its source, may in fact control the onset of 
an oscillation. 
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Figure 1. Magnitude of the Order Parameter as a Function of the Bifurcation 
Parameter n for Noise on the Delayed State of the System. 

In Figure 1 it is shown that the Hopf bifurcation is also postponed (the bifurcation 
curve is shifted to higher parameter values with respect to the deterministic curve) 
when the noise is applied to the delayed state variable x(t - T) and / in Eq.(2) is 
of the form (negative feedback): 

)..on 

/ = On + xn(t _ T)" (3) 

For parameter values Q = 3.21,).. = 200,0 = 50, T = 0.3, the deterministic Hopf 
bifurcation occurs at n = 8.18. Colored (Ornstein-Uhlenbeck type) Gaussian noise 
of standard deviation u = 1.5 and correlation time lsec was added to the variable 
x(t - T). This numerical calculation can be interpreted as a simulation of the 
behavior of a neural delayed feedback system with bad memory (i.e. in which there 
is a small error on the value recalled from the past). Thus, faulty memory also 
stabilizes the fixed point. 

5 DISTRIBUTED DELAYS 

The use of a single fixed delay in models of delayed feedback is often a good approx­
imation and strongly warranted in a simple circuit comprising only a small number 
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of cells. However, neural systems often have a spatial extent due to the presence of 
many parallel pathways in which the axon sizes are distributed according to a cer­
tain probability density. This leads to a distribution of conduction velocities down 
these pathways and therefore to a distribution of propagation delays. In this case, 
the dynamics are more appropriately modelled by an integro-differential equation 
of the form 

�~�;� + ax(t) = �f�(�~�;� z(t), x(t», let) = 1too K(t - u)x(u) duo (4) 

The extent to which values of the state variable in the past affect its present evolu­
tion is determined by the kernel K(t). The fixed delay case corresponds to choosing 
the kernel to be a Dirac delta distribution. 

We have looked at the effect of a distributed delay on the Hopf bifurcation in our 
prototypical delayed feedback system Eq.(2). Specifically, we have considered the 
case where the kernel in Eq.( 4) has the form of a gamma distribution 

am +1 
K(t) = �~�(�t�)� = -,- tm e-aq , a, m > O. (5) 

m. 

The average delay of this kernel is T = m;l and the kernel has the property that it 
converges to the delta function in the limit where m and a go to infinity all the while 
keeping the ratio T constant. For a kernel of a given order it is possible to convert 
the DDE Eq.(2) into a set of (m+2) coupled ordinary differential equations (ODE's) 
which approximate the DDE (an infinite set of ODE's is in this case equivalent to the 
original DDE) (see Fargue, 1973; MacDonald, 1978; Cooke and Grossman, 1982). 
We have investigated the occurrence of a Hopf bifurcation in the (m + 2) ODE's as 
a function of the order m of the memory kernel (keeping T equal to the fixed delay 
of the DDE being approximated). This involves doing a stability analysis around 
the fixed point of the (m + 2) order system of ODE's and numerically determining 
the value of the bifurcation parameter n at which the Hopf bifurcation occurs. 

The result is shown in Figure 2, where we have plotted n versus the order m of 
approximation. Note that at least a 3 dimensional system of ODE's is required for 
a Hopf bifurcation to occur in such a system. Note also the fast convergence of n 
to the bifurcation value for the DDE (5.04). These calculations were done for the 
Mackey-G lass equation 

dx + ax(t) = �~�o�n�x�(�t� - r) (6) 
dt On+xn(t-r) 

with parameters 0 = 1, a = 2, �~� = 2, r = 2 and n E (1,20). This equation is a 
model for mixed feedback dynamics (i.e. a combination of positive and negative 
feedback involving a single-humped feedback function). It displays the same quali­
tative features as Eq.(2) with the feedback given by Eq.(3) at the Hopf bifurcation 
and was chosen for ease of computation since parameters can be chosen such that 
the fixed point does not depend on the bifurcation parameter. 

We can see that, for a memory kernel of a given order, the Hopf bifurcation occurs 
at a higher value of the bifurcation parameter (which is proportional to the slope 
of the feedback function at the fixed point) than for the DDE. This implies that a 
stronger nonlinearity is required to set the ODE system into oscillation compared 






