
168 Lee and Lippmann

Practical Characteristics of Neural Network
and Conventional Pattern Classifiers on

Artificial and Speech Problems*

Yuchun Lee
Digital Equipment Corp.

40 Old Bolton Road,
OGOl-2Ull

Stow, MA 01775-1215

ABSTRACT

Richard P. Lippmann
Lincoln Laboratory, MIT

Room B-349
Lexington, MA 02173-9108

Eight neural net and conventional pattern classifiers (Bayesian­
unimodal Gaussian, k-nearest neighbor, standard back-propagation,
adaptive-stepsize back-propagation, hypersphere, feature-map, learn­
ing vector quantizer, and binary decision tree) were implemented
on a serial computer and compared using two speech recognition
and two artificial tasks. Error rates were statistically equivalent on
almost all tasks, but classifiers differed by orders of magnitude in
memory requirements, training time, classification time, and ease
of adaptivity. Nearest-neighbor classifiers trained rapidly but re­
quired the most memory. Tree classifiers provided rapid classifica­
tion but were complex to adapt. Back-propagation classifiers typ­
ically required long training times and had intermediate memory
requirements. These results suggest that classifier selection should
often depend more heavily on practical considerations concerning
memory and computation resources, and restrictions on training
and classification times than on error rate.

-This work was sponsored by the Department of the Air Force and the Air Force Office of
Scientific Research.

Practical Characteristics of Neural Network 169

1 Introduction
A shortcoming of much recent neural network pattern classification research has
been an overemphasis on back-propagation classifiers and a focus on classification
error rate as the main measure of performance. This research often ignores the many
alternative classifiers that have been developed (see e.g. [10]) and the practical
tradeoffs these classifiers provide in training time, memory requirements, classifica­
tion time, complexity, and adaptivity. The purpose of this research was to explore
these tradeoffs and gain experience with many different classifiers. Eight neural net
and conventional pattern classifiers were used. These included Bayesian-unimodal
Gaussian, k-nearest neighbor (kNN), standard back-propagation, adaptive-stepsize
back-propagation, .hypersphere, feature-map (FM), learning vector quantizer (LVQ) ,
and binary decision tree classifiers.

BULLSEYE

B I.)
Dimensionality: 2
Testing Set Size: 500
Training Set Size: 500
Classes: 2

DIGIT
Dimensionality: 22 Cepstra
Training Set Size: 70
Testing Set Size: 112
16 Training Sets
16 Testing Sets
Classes: 7 Digits
Talker Dependent

DISJOINT

Dimensionality: 2
Testing Set Size: 500
Training Set Size: 500
Classes: 2

VOWEL
Dimension: 2 Formants
Training Set Size: 338
Testing Set Size: 330
Classes: 10 Vowels
Talker Independent

Figure 1: Four problems used to test classifiers.

Classifiers were implemented on a serial computer and tested using the four prob­
lems shown in Fig. 1. The upper two artificial problems (Bullseye and Disjoint)
require simple two-dimensional convex or disjoint decision regions for minimum er­
ror classification. The lower digit recognition task (7 digits, 22 cepstral parameters,

170 Lee and Lippmann

16 talkers, 70 training and 112 testing patterns per talker) and vowel recognition
task (10 vowels, 2 formant parameters, 67 talkers, 338 training and 330 testing pat­
terns) use real speech data and require more complex decision regions. These tasks
are described in [6, 11] and details of experiments are available in [9].

2 Training and Classification Parameter Selection

Initial experiments were performed to select sizes of classifiers that provided good
performance with limited training data and also to select high-performing versions
of each type of classifier. Experiments determined the number of nodes and hidden
layers in back-propagation classifiers, pruning techniques to use with tree and hyper­
sphere classifiers, and numbers of exemplars or kernel nodes to use with feature-map
and LVQ classifiers.

2.1 Back-Propagation Classifiers

In standard back-propagation, weights typically are updated only after each trial
or cycle. A trial is defined as a single training pattern presentation and a cycle is
defined as a sequence of trials which sample all patterns in the training set. In group
updating, weights are updated every T trials while in trial-by-trial training, weights
are updated every trial. Furthermore, in trial-by-trial updating, training patterns
can be presented sequentially where a pattern is guaranteed to be presented every
T trials, or they can be presented randomly where patterns are randomly selected
from the training set. Initial experiments demonstrated that random trial-by-trial
training provided the best convergence rate and error reduction during training. It
was thus used whenever possible with all back-propagation classifiers.

All back-propagation classifiers used a single hidden layer and an output layer with
as many nodes as classes. The classification decision corresponded to the class of
the node in the output layer with the highest output value. During training, the
desired output pattern, D, was a vector with all elements set to 0 except for the
element corresponding to the correct class of the input pattern. This element of
D was set to 1. The mean-square difference between the actual output and this
desired output error is minimized when the output of each node is exactly the Bayes
a posteriori probability for each correct class [1, 10]. Back-propagation with this
"1 of m" desired output is thus well justified theoretically because it attempts to
estimate minimum-error Bayes probability functions. The number of hidden nodes
used in each back-propagation classifier was determined experimentally as described
in [6, 7, 9, 11].

Three "improved" back-propagation classifiers with the potential of reduced training
times where studied. The first, the adaptive-stepsize-classifier, has a global stepsize
that is adjusted after every training cycle as described in [4]. The second, the
multiple-adaptive-stepsize classifier, has multiple stepsizes (one for each weight)
which are adjusted after every training cycle as described in [8]. The third classifier
uses the conjugate gradient method [9, 12] to minimize the output mean-square
error.

Practical Characteristics of Neural Network 171

The goal of the three "improved" versions of back-propagation was to shorten the of­
ten lengthy training time observed with standard back-propagation. These improve­
ments relied on fundamental assumptions about the error surfaces. However, only
the multiple-adaptive-stepsize algorithm was used for the final classifier comparison
due to the poor performance of the other two algorithms. The adaptive-stepsize
classifier often could not achieve adequately low error rates because the global step­
size (7]) frequently converged too quickly to zero during training. The multiple­
adaptive-stepsize classifier did not train faster than a standard back-propagation
classifier with carefully selected stepsize value. Nevertheless, it eliminated the need
for pre-selecting the stepsize parameter. The conjugate gradient classifier worked
well on simple problems but almost always rapidly converged to a local minimum
which provided high error rates on the more complex speech problems.

4oo0~ ____ ~(A~)~H_Y_P_E~R_S_PH_E_RE~ ____ ~ (B) BINARY DECISION TREE

3000

2000

F2(Hz)

1000

500 L.L __ ----L.;~___'~ __ .l__. __ ___l

o 500 1000 1400 0 500 1000 1400
Fl(Hz) Fl(Hz)

Figure 2: Decision regions formed by the hypersphere classifier (A) and by the
binary decision tree classifier (B) on the test set for the vowel problem. Inputs
consist of the first two formants for ten vowels in the words A. who'd, <> hawed, +
hod, 0 hud, x had, > heed, ~ hid, 0 head, V heard, and < hood as described in
[6, 9].

2.2 Hypersphere Classifier

Hypersphere classifiers build decision regions from nodes that form separate hyper­
sphere decision regions. Many different types of hypersphere classifiers have been
developed [2, 13]. Experiments discussed in [9], led to the selection of a specific ver­
sion of hypersphere classifier with "pruning". Each hypersphere can only shrink in
size, centers are not repositioned, an ambiguous response (positive outputs from hy­
perspheres corresponding to different classes) is mediated using a nearest-neighbor

172 Lee and Lippmann

rule, and hyperspheres that do not contribute to the classification performance are
pruned from the classifier for proper "fitting" of the data and to reduce memory
usage. Decision regions formed by a hypersphere classifier for the vowel classifica­
tion problem are shown in the left side of Fig. 2. Separate regions in this figure
correspond to different vowels. Decision region boundaries contain arcs which are
segments of hyperspheres (circles in two dimensions) and linear segments caused by
the application of the nearest neighbor rule for ambiguous responses.

2.3 Binary Decision Tree Classifier

Binary decision tree classifiers from [3] were used in all experiments. Each node in a
tree has only two immediate offspring and the splitting decision is based on only one
of the input dimensions. Decision boundaries are thus overlapping hyper-rectangles
with sides parallel to the axes of the input space and decision regions become more
complex as more nodes are added to the tree. Decision trees for each problem were
grown until they classified all the training data exactly and then pruned back using
the test data to determine when to stop pruning. A complete description of the
decision tree classifier used is provided in [9] and decision regions formed by this
classifier for the vowel problem are shown in the right side of Fig. 2.

2.4 Other Classifiers

The remaining four classifiers were tuned by selecting coarse sizing parameters to
"fit" the problem imposed. Some of these parameters include the number of ex­
emplars in the LVQ and feature map classifiers and k in the k-nearest neighbor
classifier. Different types of covariance matrices (full, diagonal, and various types
of grand averaging) were also tried for the Bayesian-unimodal Gaussian classifier.
Best sizing parameter values for classifiers were almost always not those that that
best classified the training set. For the purpose of this study, training data was used
to determine internal parameters or weights in classifiers. The size of a classifier
and coarse sizing parameters were selected using the test data. In real applications
when a test set is not available, alternative methods, such as cross validation[3, 14]
would be used.

3 Classifier Comparison

All eight classifiers were evaluated on the four problems using simulations pro­
grammed in C on a Sun 3/110 workstation with a floating point accelerator. Clas­
sifiers were trained until their training error rate converged.

3.1 Error Rates

Error rates for all classifiers on all problems are shown in Fig. 3. The middle
solid lines in this figure correspond to the average error rate over all classifiers
for each problem. The shaded area is one binomial standard deviation above and
below this average. As can be seen, there are only three cases where the error
rate of anyone classifier is substantially different from the average error. These
exceptions are the Bayesian-unimodal Gaussian classifier on the disjoint problem

Practical Characteristics of Neural Network 173

IU~ ____________________ ,

lU~--------------------,

-~ -a:
o
a:
CC
UJ

Z
o -
~
o -u. -Ul
Ul
<
...J
o

BULLSEYE

DIGIT

DISJOINT

2

o~~-L~~~~==~~~

30~--------------------,

VOWEL
25

Figure 3: Error rates for all classifiers on all four problems. The middle solid
lines correspond to the average error rate over all classifiers for each problem. The
shaded area is one binomial standard deviation above and below the average error
rate.

and the decision tree classifier on the digit and the disjoint problem. The Bayesian­
unimodal Gaussian classifier performed poorly on the disjoint problem because it
was unable to form the required bimodal disjoint decision regions. The decision
tree classifier performed poorly on the digit problem because the small amount of
training data (10 patterns per class) was adequately classified by a minimal13-node
tree which didn't generalize well and didn't even use all 22 input dimensions. The
decision tree classifier worked well for the disjoint problem because it forms decision
regions parallel to both input axes as required for this problem.

3.2 Practical Characteristics

In contrast to the small differences in error rate, differences between classifiers on
practical performance issues such as training and classification time, and memory
usage were large. Figure 4 shows that the classifiers differed by orders of magnitude
in training time. Shown in log-scale, the k-nearest neighbor stands out distinctively

174 Lee and Lippmann

-CI) -

10,000 _"""T""---r---""T'"'---r----,----,---.,.....--.,-:I

1000

100

10

1

o BULLSEYE

• VOWEL

6. DISJOINT

o DIGIT

0.01 L--L __ -L __ --L. __ --1 __ ----' __ ---l ___ '--__ "---.....

BAYESIAN MUL TI·STEPSIZE kNN

BACK·PROP HYPERSPHERE

CLASSIFIERS

FEATURE MAP
Lva TREE

Figure 4: Training time of all classifiers on all four problems.

as the fastest trained classifier by many orders of magnitude. Depending on the
problem, Bayesian-unimodal Gaussian, hypersphere, decision tree, and feature map
classifiers also have reasonably short training times. LVQ and back-propagation
classifiers often required the longest training time. It should be noted that alterna­
tive implementations, for example using parallel computers, would lead to different
results.

Adaptivity or the ability to adapt using new patterns after complete training also
differed across classifiers. The k-nearest neighbor and hypersphere classifiers are
able to incorporate new information most readily. Others such as back-propagation
and LVQ classifiers are more difficult to adapt and some, such as decision tree
classifiers, are not designed to handle further adaptation after training is complete.

The binary decision tree can classify patterns much faster than others. Unlike most
classifiers that depend on "distance" calculations between the input pattern and all
stored exemplars, the decision tree classifier requires only a few numerical compar­
isons. Therefore, the decision tree classifier was many orders of magnitude faster

Practical Characteristics of Neural Network 175

8000

kNN 0 BULLSEYE

• VOWEL

FM t:. DISJOINT -f/) 0 DIGIT Q) 6000 - BAYES >- HYPERSPHERE CD -> a: BACK-PROPAGATION
0
:E MULTIPLE STEPSIZE w
:E 4000
Z
0

~
0
u:::
en
en 2000 cs:
...J
0

o 100 200 300 400

TRAINING PROGRAM COMPLEXITY (Lines of Codes)

Figure 5: Classification memory usage versus training program complexity for all
classifiers on all four problems.

in classification than other classifiers. However, decision tree classifiers require the
most complex training algorithm. As a rough measurement of the ease of imple­
mentation, subjectively measured by the number of lines in the training program,
the decision tree classifier is many times more complex than the simplest training
program- that of the k-nearest neighbor classifier. However, the k-nearest neighbor
classifier is one of the slowest in classification when implemented serially without
complex search techniques such as k-d trees [5]. These techniques greatly reduce
classification time but make adaptation to new training data more difficult and
increase complexity.

4 Trade-Offs Between Performance Criteria

Noone classifier out-performed the rest on all performance criteria. The selection
of a "best" classifier depends on practical problem constraints which differ across
problems. Without knowing these constraints or associating explicit costs with
various performance criteria, a classifier that is "best" can not be meaningfully
determined. Instead, there are numerous trade-off relationships between various
criteria.

176 Lee and Lippmann

One trade-off shown in Fig. 5 is classification memory usage versus the complexity
of the training algorithm. The far upper left corner, where training is very simple

and memory is not efficiently utilized, contains the k-nearest neighbor classifier. In
contrast, the binary decision tree classifier is in the lower right corner, where the
overall memory usage is minimized and the training process is very complex. Other
classifiers are intermediate.

3000 I I. I ---r
MULTIPLE STEPSIZE

• BACKPROPAGATION

- 2000
(/) -w
~ ...
C)
z
Z
cc a:
to- 1000

Lva BAYES

• HYPERSPHERE

I
• TREE kNN

0
1000 2000 3000 4000 5000

CLASSIFICATION MEMORY USAGE (Bytes)

Figure 6: Training time versus classification memory usage of all classifiers on the
vowel problem.

Figure 6 shows the relationship between training time and classification memory
usage for the vowel problem. The k-nearest neighbor classifier consistently provides
the shortest training time but requires the most memory. The hypersphere clas­
sifier optimizes these two criteria well across all four problems. Back-propagation
classifiers frequently require long training times and require intermediate amounts
of memory.

5 Summary

This study explored practical characteristics of neural net and conventional pattern
classifiers. Results demonstrate that classification error rates can be equivalent
across classifiers when classifiers are powerful enough to form minimum error de­
cision regions, when they are rigorously tuned, and when sufficient training data
is provided. Practical characteristics such as training time, memory requirements,
and classification time, however, differed by orders of magnitude. In practice, these
factors are more likely to affect classifier selection. Selection will often be driven

Practical Characteristics of Neural Network 177

by practical considerations concerning memory and computation resources, restric­
tions on training, test, and adaptation times, and ease of use and implementation.
The many existing neural net and conventional classifiers allow system designers to
trade these characteristics off'. Tradeoffs will vary with implementation hardware
(e.g. serial versus parallel, analog versus digital) and details of the problem (e.g.
dimension of the input vector, complexity of decision regions). Our current research
efforts are exploring these tradeoff's on more difficult problems and studying addi­
tional classifiers including radial-basis-function classifiers, high-order networks, and
Gaussian mixture classifiers.

References

[1] A. R. Barron and R. 1. Barron. Statistical learning networks: A unifying view. In
1988 Symposium on the Interface: Statistics and Computing Science, Reston, Vir­
ginia, April 21-23 1988.

[2] B. G. Batchelor. Classification and data analysis in vector space. In B. G. Batchelor,
editor, Pattern Recognition, chapter 4, pages 67-116. Plenum Press, London, 1978.

[3] 1. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and
Regression Trees. Wadsworth International Group, Belmont, CA, 1984.

[4] 1. W. Chan and F. Fallside. An adaptive training algorithm for back propagation
networks. Computer Speech and Language, 2:205-218, 1987.

[5] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best
matches in logarithmic expected time. ACM Transactions on Mathematical Software,
3(3):209-226, September 1977.

[6] W. M. Huang and R. P. Lippmann. Neural net and traditional classifiers. In D. An­
derson, editor, Neural Information Processing Systems, pages 387-396, New York,
1988. American Institute of Physics.

[7] William Y. Huang and Richard P. Lippmann. Comparisons between conventional
and neural net classifiers. In 1st International Conference on Neural Networks, pages
IV-485. IEEE, June 1987.

[8] R. A. Jacobs. Increased rates of convergence through learning rate adaptation. Neural
Networks, 1:295-307, 1988.

[9] Yuchun Lee. Classifiers: Adaptive modules in pattern recognition systems. Master's
thesis, Massachusetts Institute of Technology, Department of Electrical Engineering
and Computer Science, Cambridge, MA, May 1989.

[10] R. P. Lippmann. Pattern classification using neural networks. IEEE Communications
Magazine, 27(11):47-54, November 1989.

[11] Richard P. Lippmann and Ben Gold. Neural classifiers useful for speech recognition.
In 1st International Conference on Neural Networks, pages IV-417. IEEE, June 1987.

[12] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, editors. Numerical
Recipes. Cambridge University Press, New York, 1986.

[13] D. 1. Reilly, L. N. Cooper, and C. Elbaum. A neural model for category learning.
Biological Cybernetics, 45:35-41, 1982.

[14] M. Stone. Cross-validation choice and assessment of statistical predictions. Journal
of the Royal Statistical Society, B-36:111-147, 1974.

