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Eight neural net and conventional pattern classifiers (Bayesian­
unimodal Gaussian, k-nearest neighbor, standard back-propagation, 
adaptive-stepsize back-propagation, hypersphere, feature-map, learn­
ing vector quantizer, and binary decision tree) were implemented 
on a serial computer and compared using two speech recognition 
and two artificial tasks. Error rates were statistically equivalent on 
almost all tasks, but classifiers differed by orders of magnitude in 
memory requirements, training time, classification time, and ease 
of adaptivity. Nearest-neighbor classifiers trained rapidly but re­
quired the most memory. Tree classifiers provided rapid classifica­
tion but were complex to adapt. Back-propagation classifiers typ­
ically required long training times and had intermediate memory 
requirements. These results suggest that classifier selection should 
often depend more heavily on practical considerations concerning 
memory and computation resources, and restrictions on training 
and classification times than on error rate. 

-This work was sponsored by the Department of the Air Force and the Air Force Office of 
Scientific Research. 
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1 Introduction 
A shortcoming of much recent neural network pattern classification research has 
been an overemphasis on back-propagation classifiers and a focus on classification 
error rate as the main measure of performance. This research often ignores the many 
alternative classifiers that have been developed (see e.g. [10]) and the practical 
tradeoffs these classifiers provide in training time, memory requirements, classifica­
tion time, complexity, and adaptivity. The purpose of this research was to explore 
these tradeoffs and gain experience with many different classifiers. Eight neural net 
and conventional pattern classifiers were used. These included Bayesian-unimodal 
Gaussian, k-nearest neighbor (kNN), standard back-propagation, adaptive-stepsize 
back-propagation, .hypersphere, feature-map (FM), learning vector quantizer (LVQ) , 
and binary decision tree classifiers. 
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Figure 1: Four problems used to test classifiers. 

Classifiers were implemented on a serial computer and tested using the four prob­
lems shown in Fig. 1. The upper two artificial problems (Bullseye and Disjoint) 
require simple two-dimensional convex or disjoint decision regions for minimum er­
ror classification. The lower digit recognition task (7 digits, 22 cepstral parameters, 
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16 talkers, 70 training and 112 testing patterns per talker) and vowel recognition 
task (10 vowels, 2 formant parameters, 67 talkers, 338 training and 330 testing pat­
terns) use real speech data and require more complex decision regions. These tasks 
are described in [6, 11] and details of experiments are available in [9]. 

2 Training and Classification Parameter Selection 

Initial experiments were performed to select sizes of classifiers that provided good 
performance with limited training data and also to select high-performing versions 
of each type of classifier. Experiments determined the number of nodes and hidden 
layers in back-propagation classifiers, pruning techniques to use with tree and hyper­
sphere classifiers, and numbers of exemplars or kernel nodes to use with feature-map 
and LVQ classifiers. 

2.1 Back-Propagation Classifiers 

In standard back-propagation, weights typically are updated only after each trial 
or cycle. A trial is defined as a single training pattern presentation and a cycle is 
defined as a sequence of trials which sample all patterns in the training set. In group 
updating, weights are updated every T trials while in trial-by-trial training, weights 
are updated every trial. Furthermore, in trial-by-trial updating, training patterns 
can be presented sequentially where a pattern is guaranteed to be presented every 
T trials, or they can be presented randomly where patterns are randomly selected 
from the training set. Initial experiments demonstrated that random trial-by-trial 
training provided the best convergence rate and error reduction during training. It 
was thus used whenever possible with all back-propagation classifiers. 

All back-propagation classifiers used a single hidden layer and an output layer with 
as many nodes as classes. The classification decision corresponded to the class of 
the node in the output layer with the highest output value. During training, the 
desired output pattern, D, was a vector with all elements set to 0 except for the 
element corresponding to the correct class of the input pattern. This element of 
D was set to 1. The mean-square difference between the actual output and this 
desired output error is minimized when the output of each node is exactly the Bayes 
a posteriori probability for each correct class [1, 10]. Back-propagation with this 
"1 of m" desired output is thus well justified theoretically because it attempts to 
estimate minimum-error Bayes probability functions. The number of hidden nodes 
used in each back-propagation classifier was determined experimentally as described 
in [6, 7, 9, 11]. 

Three "improved" back-propagation classifiers with the potential of reduced training 
times where studied. The first, the adaptive-stepsize-classifier, has a global stepsize 
that is adjusted after every training cycle as described in [4]. The second, the 
multiple-adaptive-stepsize classifier, has multiple stepsizes (one for each weight) 
which are adjusted after every training cycle as described in [8]. The third classifier 
uses the conjugate gradient method [9, 12] to minimize the output mean-square 
error. 
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The goal of the three "improved" versions of back-propagation was to shorten the of­
ten lengthy training time observed with standard back-propagation. These improve­
ments relied on fundamental assumptions about the error surfaces. However, only 
the multiple-adaptive-stepsize algorithm was used for the final classifier comparison 
due to the poor performance of the other two algorithms. The adaptive-stepsize 
classifier often could not achieve adequately low error rates because the global step­
size (7]) frequently converged too quickly to zero during training. The multiple­
adaptive-stepsize classifier did not train faster than a standard back-propagation 
classifier with carefully selected stepsize value. Nevertheless, it eliminated the need 
for pre-selecting the stepsize parameter. The conjugate gradient classifier worked 
well on simple problems but almost always rapidly converged to a local minimum 
which provided high error rates on the more complex speech problems. 
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Figure 2: Decision regions formed by the hypersphere classifier (A) and by the 
binary decision tree classifier (B) on the test set for the vowel problem. Inputs 
consist of the first two formants for ten vowels in the words A. who'd, <> hawed, + 
hod, 0 hud, x had, > heed, ~ hid, 0 head, V heard, and < hood as described in 
[6, 9]. 

2.2 Hypersphere Classifier 

Hypersphere classifiers build decision regions from nodes that form separate hyper­
sphere decision regions. Many different types of hypersphere classifiers have been 
developed [2, 13]. Experiments discussed in [9], led to the selection of a specific ver­
sion of hypersphere classifier with "pruning". Each hypersphere can only shrink in 
size, centers are not repositioned, an ambiguous response (positive outputs from hy­
perspheres corresponding to different classes) is mediated using a nearest-neighbor 
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rule, and hyperspheres that do not contribute to the classification performance are 
pruned from the classifier for proper "fitting" of the data and to reduce memory 
usage. Decision regions formed by a hypersphere classifier for the vowel classifica­
tion problem are shown in the left side of Fig. 2. Separate regions in this figure 
correspond to different vowels. Decision region boundaries contain arcs which are 
segments of hyperspheres (circles in two dimensions) and linear segments caused by 
the application of the nearest neighbor rule for ambiguous responses. 

2.3 Binary Decision Tree Classifier 

Binary decision tree classifiers from [3] were used in all experiments. Each node in a 
tree has only two immediate offspring and the splitting decision is based on only one 
of the input dimensions. Decision boundaries are thus overlapping hyper-rectangles 
with sides parallel to the axes of the input space and decision regions become more 
complex as more nodes are added to the tree. Decision trees for each problem were 
grown until they classified all the training data exactly and then pruned back using 
the test data to determine when to stop pruning. A complete description of the 
decision tree classifier used is provided in [9] and decision regions formed by this 
classifier for the vowel problem are shown in the right side of Fig. 2. 

2.4 Other Classifiers 

The remaining four classifiers were tuned by selecting coarse sizing parameters to 
"fit" the problem imposed. Some of these parameters include the number of ex­
emplars in the LVQ and feature map classifiers and k in the k-nearest neighbor 
classifier. Different types of covariance matrices (full, diagonal, and various types 
of grand averaging) were also tried for the Bayesian-unimodal Gaussian classifier. 
Best sizing parameter values for classifiers were almost always not those that that 
best classified the training set. For the purpose of this study, training data was used 
to determine internal parameters or weights in classifiers. The size of a classifier 
and coarse sizing parameters were selected using the test data. In real applications 
when a test set is not available, alternative methods, such as cross validation[3, 14] 
would be used. 

3 Classifier Comparison 

All eight classifiers were evaluated on the four problems using simulations pro­
grammed in C on a Sun 3/110 workstation with a floating point accelerator. Clas­
sifiers were trained until their training error rate converged. 

3.1 Error Rates 

Error rates for all classifiers on all problems are shown in Fig. 3. The middle 
solid lines in this figure correspond to the average error rate over all classifiers 
for each problem. The shaded area is one binomial standard deviation above and 
below this average. As can be seen, there are only three cases where the error 
rate of anyone classifier is substantially different from the average error. These 
exceptions are the Bayesian-unimodal Gaussian classifier on the disjoint problem 
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Figure 3: Error rates for all classifiers on all four problems. The middle solid 
lines correspond to the average error rate over all classifiers for each problem. The 
shaded area is one binomial standard deviation above and below the average error 
rate. 

and the decision tree classifier on the digit and the disjoint problem. The Bayesian­
unimodal Gaussian classifier performed poorly on the disjoint problem because it 
was unable to form the required bimodal disjoint decision regions. The decision 
tree classifier performed poorly on the digit problem because the small amount of 
training data (10 patterns per class) was adequately classified by a minimal13-node 
tree which didn't generalize well and didn't even use all 22 input dimensions. The 
decision tree classifier worked well for the disjoint problem because it forms decision 
regions parallel to both input axes as required for this problem. 

3.2 Practical Characteristics 

In contrast to the small differences in error rate, differences between classifiers on 
practical performance issues such as training and classification time, and memory 
usage were large. Figure 4 shows that the classifiers differed by orders of magnitude 
in training time. Shown in log-scale, the k-nearest neighbor stands out distinctively 
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Figure 4: Training time of all classifiers on all four problems. 

as the fastest trained classifier by many orders of magnitude. Depending on the 
problem, Bayesian-unimodal Gaussian, hypersphere, decision tree, and feature map 
classifiers also have reasonably short training times. LVQ and back-propagation 
classifiers often required the longest training time. It should be noted that alterna­
tive implementations, for example using parallel computers, would lead to different 
results. 

Adaptivity or the ability to adapt using new patterns after complete training also 
differed across classifiers. The k-nearest neighbor and hypersphere classifiers are 
able to incorporate new information most readily. Others such as back-propagation 
and LVQ classifiers are more difficult to adapt and some, such as decision tree 
classifiers, are not designed to handle further adaptation after training is complete. 

The binary decision tree can classify patterns much faster than others. Unlike most 
classifiers that depend on "distance" calculations between the input pattern and all 
stored exemplars, the decision tree classifier requires only a few numerical compar­
isons. Therefore, the decision tree classifier was many orders of magnitude faster 
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Figure 5: Classification memory usage versus training program complexity for all 
classifiers on all four problems. 

in classification than other classifiers. However, decision tree classifiers require the 
most complex training algorithm. As a rough measurement of the ease of imple­
mentation, subjectively measured by the number of lines in the training program, 
the decision tree classifier is many times more complex than the simplest training 
program- that of the k-nearest neighbor classifier. However, the k-nearest neighbor 
classifier is one of the slowest in classification when implemented serially without 
complex search techniques such as k-d trees [5]. These techniques greatly reduce 
classification time but make adaptation to new training data more difficult and 
increase complexity. 

4 Trade-Offs Between Performance Criteria 

Noone classifier out-performed the rest on all performance criteria. The selection 
of a "best" classifier depends on practical problem constraints which differ across 
problems. Without knowing these constraints or associating explicit costs with 
various performance criteria, a classifier that is "best" can not be meaningfully 
determined. Instead, there are numerous trade-off relationships between various 
criteria. 
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One trade-off shown in Fig. 5 is classification memory usage versus the complexity 
of the training algorithm. The far upper left corner, where training is very simple 

and memory is not efficiently utilized, contains the k-nearest neighbor classifier. In 
contrast, the binary decision tree classifier is in the lower right corner, where the 
overall memory usage is minimized and the training process is very complex. Other 
classifiers are intermediate. 

3000 I I. I ---r 
MULTIPLE STEPSIZE 

• BACKPROPAGATION 

- 2000 
(/) -w 
~ ... 
C) 
z 
Z 
cc a: 
to- 1000 

Lva BAYES 

• HYPERSPHERE 

I 
• TREE kNN 

0 
1000 2000 3000 4000 5000 

CLASSIFICATION MEMORY USAGE (Bytes) 

Figure 6: Training time versus classification memory usage of all classifiers on the 
vowel problem. 

Figure 6 shows the relationship between training time and classification memory 
usage for the vowel problem. The k-nearest neighbor classifier consistently provides 
the shortest training time but requires the most memory. The hypersphere clas­
sifier optimizes these two criteria well across all four problems. Back-propagation 
classifiers frequently require long training times and require intermediate amounts 
of memory. 

5 Summary 

This study explored practical characteristics of neural net and conventional pattern 
classifiers. Results demonstrate that classification error rates can be equivalent 
across classifiers when classifiers are powerful enough to form minimum error de­
cision regions, when they are rigorously tuned, and when sufficient training data 
is provided. Practical characteristics such as training time, memory requirements, 
and classification time, however, differed by orders of magnitude. In practice, these 
factors are more likely to affect classifier selection. Selection will often be driven 
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by practical considerations concerning memory and computation resources, restric­
tions on training, test, and adaptation times, and ease of use and implementation. 
The many existing neural net and conventional classifiers allow system designers to 
trade these characteristics off'. Tradeoffs will vary with implementation hardware 
(e.g. serial versus parallel, analog versus digital) and details of the problem (e.g. 
dimension of the input vector, complexity of decision regions). Our current research 
efforts are exploring these tradeoff's on more difficult problems and studying addi­
tional classifiers including radial-basis-function classifiers, high-order networks, and 
Gaussian mixture classifiers. 
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