
Discovering the Structure of a Reactive Environment by Exploration 439 

Discovering the Structure of a Reactive Environment 
by Exploration 

Michael C. Mozer 
Department of Computer Science 
and Institute of Cognitive Science 

University of Colorado 
Boulder, CO 80309-0430 

ABSTRACT 

Jonatban Bachrach 
DepartmentofCompu~ 
and Infonnation Science 

University of Massachusetts 
Amherst, MA 01003 

Consider a robot wandering around an unfamiliar environment. performing ac­
tions and sensing the resulting environmental states. The robot's task is to con­
struct an internal model of its environment. a model that will allow it to predict 
the consequences of its actions and to determine what sequences of actions to 
take to reach particular goal states. Rivest and Schapire (1987&, 1987b; 
Schapire. 1988) have studied this problem and have designed a symbolic algo­
rithm to strategically explore and infer the structure of "finite state" environ­
ments. The heart of this algorithm is a clever representation of the environment 
called an update graph. We have developed a connectionist implementation of 
the update graph using a highly-specialized network architecture. With back 
propagation learning and a trivial exploration strategy - choosing random ac­
tions - the connectionist network can outperfonn the Rivest and Schapire al­
gorithm on simple problems. The network has the additional strength that it 
can accommodate stochastic environments. Perhaps the greatest virtue of the 
connectionist approach is that it suggests generalizations of the update graph 
representation that do not arise from a traditional, symbolic perspective. 

1 INTRODUCTION 

Consider a robot placed in an unfamiliar environment The robot is allowed to wander 
around the environment, performing actions and sensing the resulting environmental 
states. With sufficient exploration, the robot should be able to construct an internal 
model of the environment, a model that will allow it to predict the consequences of its ac­
tions and to determine what sequence of actions must be taken to reach a particular goal 
state. In this paper, we describe a connectionist network that accomplishes this task, 
based on a representation of finite-state automata developed by Rivest and Scbapire 



440 Mozer and Bachrach 

(1987a, 1987b; Schapire. 1988). 

The environments we wish to consider can be modeled by a finite-state automaton (FSA). 
In each environment. the robot has a set of discrete actions it can execute to move from 
one environmental state to another. At each environmental state. a set of binary-valued 
sensations can be detected by the robot To illustrate the concepts and methods in our 
work, we use as an extended example a simple environment, the n -room world (from 
Rivest and Schapire). The n -room world consists of n rooms arranged in a circular 
chain. Each room is connected to the two adjacent rooms. In each room is a light bulb 
and light switch. The robot can sense whether the light in the room where it currently 
stands is on or off. The robot has three possible actions: move to the next room down 
the chain (0). move to the next room up the chain (U). and toggle the light switch in the 
current room (T). 

2 MODELING THE ENVIRONMENT 

If the FSA corresponding to the n -room world is known, the sensory consequences of 
any sequence of actions can be predicted. Further. the FSA can be used to determine a 
sequence of actions to take to obtain a certain goal state. Although one might try 
developing an algorithm to learn the FSA directly, there are several arguments against 
doing so (Schapire, 1988). Most important is that the FSA often does not capture struc­
ture inherent in the environment. Rather than trying to learn the FSA, Rivest and 
Scbapire suggest learning another representation of the environment called an update 
graph. The advantage of the update graph is that in environments with regularities, the 
number of nodes in the update graph can be much smaller than in the FSA (e.g., 2n 
versus 2" for the n -room world). Rivest and Schapire's formal definition of the update 
graph is based on the notion of tests that can be performed on the environment. and the 
equivalence of different tests. In this section, we present an alternative, more intuitive 
view of the update graph that facilitates a connectionist interpretation. 

Consider a three-room world. To model this environment, the essential knowledge re­
quired is the status of the lights in the current room (CUR), the next room up from the 
ClUTent room (UP), and the next room down from the current room (DOWN). Assume the 
update graph has a node for each of these environmental variables. Further assume that 
each node has an associated value indicating whether the light in the particular room is 
on or off. 

If we know the values of the variables in the current environmental state, what will their 
new values be after taking some action, say u1 When the robot moves to the next room 
up, the new value of CUR becomes the previous value of UP; the new value of DOWN be­
comes the previous value of CUR; and in the three-room world, the new value of UP be­
comes the previous value of DOWN. As depicted in Figure la, this action thus results in 
shifting values around in the three nodes. This makes sense because moving up does not 
affect the status of any light, but it does alter the robot's position with respect to the three 
rooms. Figure 1b shows the analogous flow of information for the action o. Finally, the 
action T should cause the status of the current room's light to be complemented while the 
other two rooms remain unaffected (Figure 1c). In Figure 1d, the three sets of links from 
Figures la-c have been superimposed and have been labeled with the appropriate action. 

One final detail: The Rivest and Schapire update graph formalism does not make use of 
the "complementation" link. To avoid it, each node may be split into two values. one 



Discovering the Structure of a Reactive Environment by Exploration 441 

representing the status of a room and the other its complement (Figure Ie). Toggling 
thus involves exchanging the values of CUR and CUR. Just as the values of CUR, UP, and 
DOWN must be shifted for the actions u and D, so must their complements. 

Given the update graph in Figure Ie and the value of each node for the current environ­
mental state, the resuk of any sequence of actions can be predicted simply by shifting 
values around in the graph. Thus, as far as predicting the input/output behavior of the en­
vironment is concerned, the update graph serves the same purpose as the FSA. 

A defining and nonobvious (from the current description) property of an update graph is 
that each node has exactly one incoming link for each action. We call this the one­
input-per-action constraint. For example, CUR gets input from CUR for the action T, 
from UP for u. and from DOWN for D. 

(a) 

(c) N 

(e) 

~ 
@ 
-~ 

(6) 

(d) 

T 

Flgure 1: (a) Links between nodes indicating the desired infonnation flow on pedonning the action u. CUR 
represenu that status of the Jighu in the ament room, UP the status of the Jighu in the next room up, and DOWN 
the status of the lights in the next room down. (b) Links between nodes indicating the desired infonnation flow 
on perfonning the action D. (c) Links between nodes indicating the desired infonnation flow on perfonning the 
action T. The "_" on the link from CUR to iuelf indicates that the value must be complemented. (d) Links 
from the three separate actions superimposed and labeled by the action. (e) The complementation link can be 
avoided by adding a set of nodes that represent the complemenu of the original seL Thil is the update grapb for 
a three-room world. 



442 Mozer and Bachrach 

3 THE RIVEST AND SCHAPIRE ALGORITHM 

Rivest and Schapire have developed a symbolic algorithm (hereafter, the RS algorithm) to 
strategically explore an environment and learn its update graph representation. The RS 
algorithm fonnulates explicit hypotheses about regularities in the environment and tests 
these hypotheses one or a relatively small number at a time. As a result, the algorithm 
may not make full use of the environmental feedback obtained. It thus seems worthwhile 
to consider alternative approaches that could allow more efficient use of the environmen­
tal feedback, and hence, more efficient learning of the update graph. We have taken con­
nectionist approach, which has shown quite promising results in preliminary experiments 
and suggests other significant benefits. We detail these benefits below, but must first 
describe the basic approach. 

4 THE UPDATE GRAPH AS A CONNECTIONIST NETWORK 

How might we tum the update graph into a connectionist network? Start by asswning 
one unit in a network for each node in the update graph. The activity level of the unit 
represents the truth value associated with the update graph node. Some of these units 
serve as "outputs" of the network. For example, in the three-room world, the output of 
the network is the unit that represents the status of the current room. In other enviroD­
ments, there may several sensations in which case there will be several output units. 

What is the analog of the labeled links in the update graph? The labels indicate that 
values are to be sent down a link when a particular action occurs. In connectionist tenns, 
the links should be gated by the action. To elaborate, we might include a set of units that 
represent the possible actions; these units act to multiplicatively gate the flow of activity 
between units in the update graph. Thus, when a particular action is to be perfonned, the 
corresponding action unit is activated, and the connections that are gated by this action 
become enabled. If the action units fonn a local representation, i.e., only one is active at 
a time, exactly one set of connections is enabled at a time. Consequently, the gated con­
nections can be replaced by a set of weight matrices, one per action. To predict the 
consequences of a particular action, the weight matrix for that action is plugged into the 
network and activity is allowed to propagate through the connections. Thus, the network 
is dynamically rewired contingent on the current action. 

The effect of activity propagation should be that the new activity of a unit is the previous 
activity of some other unit A linear activation function is sufficient to achieve this: 

X(t) = Wa(t)X(t-l), (1) 

where a (t) is the action selected at time t, Wa (t) is the weight matrix associated with this 
action, and X(t) is the activity vector that results from taking action a (t). Assuming 
weight matrices which have zeroes in each row except for one connection of strength 1 
(the one-input-per-action constraint), the activation rule will cause activity values to be 
copied around the network. 

5 TRAINING THE NETWORK TO BE AN UPDATE GRAPH 

We have described a connectionist network that can behave as an update graph, and now 
tum to the procedure used to learn the connection strengths in this network. For exposi­
tory purposes, assume that the number of units in the update graph is known in advance. 



Discovering the Structure of a Reactive Environment by Exploration 443 

(This is not necessary, as we show in Mozer & Bachrach, 1989.) A weight matrix is re­
quired for each action, with a potential non-zero connection between every pair of units. 
As in most connectionist learning procedures, the weight matrices are initialized to ran­
dom values; the outcome of learning will be a set of matrices that represent the update 
graph connectivity. 

If the network is to behave as an update graph, the one-input-per-action constraint must 
be satisfied. In terms of the connectivity matrices, this means that each row of each 
weight matrix should have connection strengths of zero except for one value which is 1. 
To achieve this property, additional constraints are placed on the weights. We have ex­
plored a combination of three constraints: 

(1) l:w~j = 1, (2) l:Waij = 1, and (3) Waij ~ 0, 
j j 

where waij is the connection strength to i from j for action a. Constraint 1 is satisfied by 
introducing an additional cost term to the error function. Constraints 2 and 3 are rigidly 
enforced by renormalizing the Wai following each weight update. The normalization 
procedure finds the shortest distance projection from the updated weight vector to the hy­
perplane specified by constraint 2 that also satisfies constraint 3. 

At each time step t, the training procedure consists the following sequence of events: 

1. An action. a (t), is selected at random. 

2. The weight matrix for that action, Wa(t). is used to compute the activities at t, X(t), 
from the previous activities X(t-l). 

3. The selected action is performed on the environment and the resulting sensations are 
observed. 

4. The observed sensations are compared with the sensations predicted by the network 
(Le., the activities of units chosen to represent the sensations) to compute a measure of 
error. To this error is added the contribution of constraint 1. 

5. The back propagation "unfolding-in-time" procedure (Rumelhart, Hinton. & Williams, 
1986) is used to compute the derivative of the error with respect to weights at the 
current and earlier time steps, W a(t-;)' for i =0 ... 't-l. 

6. The weight matrices for each action are updated using the overall error gradient and 
then are renormalized to enforce constraints 2 and 3. 

7. The temporal record of unit activities, X(t-i) for i=O· .. 't, which is maintained to 
permit back propagation in time, is updated to reflect the new weights. (See further 
explanation below.) 

8. The activities of the output units at time t, which represent the predicted sensations, 
are replaced by the actual observed sensations. 

Steps 5-7 require further elaboration. The error measured at time t may be due to in­
correct propagation of activities from time t-l, which would call for modification of the 
weight matrix Wa(t). But the error may also be attributed to incorrect propagation of ac­
tivities at earlier times. Thus. back propagation is usui to assign blame to the weights at 
earlier times. One critical parameter of training is the amount of temporal history, 't, to 
consider. We have found that. for a particular problem, error propagation beyond a cer-



444 Mozer and Bachrach 

lain critical number of steps does not improve learning performance, although any fewer 
does indeed harm performance. In the results described below, we set 't for a particular 
problem to what appeared to be a safe limit: one less than the number of nodes in the up­
date graph solution of the problem. 

To back propagate error in time, we maintain a temporal record of unit activities. How­
ever, a problem arises with these activities following a weight update: the activities are 
no longer consistent with the weights - i.e., Equation I is violated. Because the error 
derivatives computed by back propagation are exact only when Equation I is satisfied, 
future weight updates based on the inconsistent activities are not assured of being correct. 
Empirically, we have found the algorithm extremely unstable if we do not address this 
problem. 

In most situations where back propagation is applied to temporally-extended sequences. 
the sequences are of finite length. Consequently. it is possible to wait until the end of the 
sequence to update the weights, at which point consistency between activities and 
weights no longer matters because the system starts fresh at the beginning of the next se­
quence. In the present situation. however, the sequence of actions does not tenninate. 
We thus were forced to consider alternative means of ensuring consistency. The most 
successful approach involved updating the activities after each weight change to force 
consistency (step 7 of the list above). To do this, we propagated the earliest activities in 
the temporal record. X(t--'t). forward again to time t, using the updated weight matrices. 

6 RESULTS 

Figure 2 shows the weights in the update graph network for the three-room world after 
the robot has taken 6,000 steps. The Figure depicts a connectivity pattern identical to 
that of the update graph of Figure Ie. To explain the correspondence, think of the di­
agram as being in the shape of a person who has a head, left and right arms, left and right 
legs, and a heart. For the action U, the head - the output unit - receives input from 
the left leg, the left leg from the heart, and the heart from the head, thereby fonning a 
three-unit loop. The other three units - the left arm, right arm, and right leg - fonn a 

Flgure 2: Weights learned after 6,000 exploratory steps in the three-room world. Each large diagram 
represents the weights corresponding to one of the three actic.lI. Each small diagram contained within a large 
diagram represents the connection strengths feeding into a particular Wlit for a particular action. There are six 
Wlits, hence six small diagrams. The output Wlit, which indicates the state of the light in the wrrent room, is the 
protruding "head" of the large diagram. A white square in a particular position of a small diagram represents the 
strength of connection from the unit in the homologous position in the large diagram to the unit represented by 
the small diagram. The area of the square is proportional to the cormection strength. 



Discovering the Structure of a Reactive Environment by Exploration 445 

similar loop. For the action D, the same two loops are present but in the reverse direc­
tion. These two loops also appear in Figure Ie. For the action T, the left and right anns, 
heart, and left leg each keep their current value, while the head and the right leg ex­
change values. This corresponds to the exchange of values between the CUR and CUR 
nodes of the Figure Ie. 

In addition to learning the update graph connectivity, the network has simultaneously 
learned the correct activity values associated with each node for the current state of the 
environment. Armed with this infonnation, the network can predict the outcome of any 
sequence of actions. Indeed, the prediction error drops to zero, causing learning to cease 
and the network to become completely stable. 

Now for the bad news: The network does not converge for every set of random initial 
weights, and when it does, it requires on the order of 6,000 steps. However, when the 
weight constraints are removed, that the network converges without fail and in about 300 
steps. In Mozer and Bachrach (1989), we consider why the weight constraints are hann­
ful and suggest several remedies. Without weight constraints, the resulting weight ma­
trix, which contains a collection of positive and negative weights of varying magnitudes, 
is not readily interpreted. In the case of the n -room world, . one reason why the final 
weights are difficult to interpret is because the net has discovered a solution that does not 
satisfy the RS update graph fonnalism; it has discovered the notion of complementation 
links of the sort shown in Figure ld. With the use of complementation links, only three 
units are required, not six. Consequently, the three unnecessary units are either cut out of 
the solution or encode infonnation redundantly. 

Table 1 compares the perfonnance of the RS algorithm against that of the connectionist 
network without weight constraints for several environments. Perfonnance is measured 
in tenns of the median number of actions the robot must take before it is able to predict 
the outcome of subsequent actions. (Further details of the experiments can be found in 
Mozer and Bachrach, 1989.) In simple environments, the connectionist update graph can 
outperfonn the RS algorithm. This result is quite surprising when considering that the ac­
tion sequence used to train the network is generated at random, in contrast to the RS algo­
rithm, which involves a strategy for exploring the environment. We conjecture that the 
network does as well as it does because it considers and updates many hypotheses in 
parallel at each time step. In complex environments, however, the network does poorly. 
By "complex", we mean that the number of nodes in the update graph is quite large and 
the number of distinguishing environmental sensations is relatively small. For example, 
the network failed to learn a 32-room world, whereas the RS algorithm succeeded. An 
intelligent exploration strategy seems necessary in this case: random actions will take 
too long to search the state space. This is one direction our future work will take. 

Beyond the potential speedups offered by connectionist learning algorithms, the connec­
tionist approach has other benefits. 

Table 1: Nwnber of Steps Required to Learn Update Graph 

Environment RS Connectionist 
Algorithm Update Graph 

Little Prince Wodd 200 91 
Car Radio World 27,695 8,167 
Four-Room World 1,388 1,308 
32-Room World 52,436 fails 



446 Mozer and Bachrach 

• Perfonnance of the network appears insensitive to prior knowledge of the number of 
nodes in the update graph being learned. In contrast, the RS algorithm requires an 
upper bound on the update graph complexity, and performance degrades significantly if 
the upper bound isn't tight. 

• The network is able to accommodate "noisy" environments, also in contrast to the RS 
algorithm. 

• Owing learning, the network continually makes predictions about what sensations will 
result from a particular action, and these predictions improve with experience. The RS 
algorithm cannot make predictions until learning is complete; it could perhaps be 
modified to do so, but there would be an associated cost. 

• Treating the update graph as matrices of connection strengths has suggested generali­
zations of the update graph formalism that don't arise from a more traditional analysis. 
First, there is the fairly direct extension of allowing complementation links. Second, 
because the connectionist network is a linear system. any rank-preserving linear 
transform of the weight matrices will produce an equivalent system, but one that does 
not have the local connectivity of the update graph (see Mozer & Bachrach, 1989). 
The linearity of the network also allows us to use tools of linear algebra to analyze the 
resulting connectivity matrices. 

These benefits indicate that the connectionist approach to the environment-modeling 
problem is worthy of further study. We do not wish to claim that the connectionist ap­
proach supercedes the impressive work of Rivest and Schapire. However, it offers com­
plementary strengths and alternative conceptualizations of the learning problem. 

Acknowledgements 

Our thanks to Rob Schapire, Paul Smolensky, and Rich Sutton for helpful discussions. This work 
was supported by a grant from the James S. McDonnell Foundation to Michael Mozer. grant 87-2-
36 from the Sloan Foundation to Geoffrey Hinton. and grant AFOSR-87"()()30 from the Air Force 
Office of Scientific Research. Bolling AFB, to Andrew Barto. 

References 

Mozer, M. C., & Bachrach, J. (1989). Discovering the structure of a reactive environment by 
exploration (Teclmical Report CU-CS-451-89). Boulder, CO: University of Colorado, 
Department of Computer Science. 

Rivest, R. L., & Schapire, R. E. (1987). Diversity-based inference of finite automata. In 
Proceedings of the Twenty-Eighth Annual Symposium on Foundations of Computer 
Science (pp. 78-87). 

Rivest, R. L., & Schapire, R. E. (1987). A new approach to unsupervised learning in detenninistic 
environments. In P. Langley (Ed.), Proceedings of the Fourth Inlernational Workslwp on 
Machine Learning (pp. 364-375). 

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by 
error propagation. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed 
processing: Explorations in the microstructure of cognition. Volume I: Foundations (pp. 
318-362). Cambridge, MA: MIT Press/Bradford Books. 

Schapire, R. E. (1988). Diversity-based inference ofjiniJe automara. Unpublished master's thesis, 
Massachusetts Instiblte of Technology, Cambridge, MA. 


