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ABSTRACT 

This paper addresses the problem of determining the weights for a 
set of linear filters (model "cells") so as to maximize the 
ensemble-averaged information that the cells' output values jointly 
convey about their input values, given the statistical properties of 
the ensemble of input vectors. The quantity that is maximized is the 
Shannon information rate, or equivalently the average mutual 
information between input and output. Several models for the role 
of processing noise are analyzed, and the biological motivation for 
considering them is described. For simple models in which nearby 
input signal values (in space or time) are correlated, the cells 
resulting from this optimization process include center-surround 
cells and cells sensitive to temporal variations in input signal. 

INTRODUCTION 

I have previously proposed [Linsker, 1987, 1988] a principle of "maximum 
information preservation," also called the "infomax" principle, that may account for 
certain aspects of the organization of a layered perceptual network. The principle 
applies to a layer L of cells (which may be the input layer or an intermediate layer 
of the network) that provides input to a next layer M. The mapping of the input 
signal vector L onto an output signal vector M, f:L ~ M, is characterized by a 
conditional probability density function ("pdf") p(MI L). The set S of allowed 
mappings I is specified. The input pdf PL(L) is also given. (In the cases considered 
here, there is no feedback from M to L.) The infomax principle states that a 
mapping I should be chosen for which the Shannon information rate [Shannon, 
1949] 

R(j) == f dL PL(L) f dM p(MI L) 10g[P(MI L)/PM(M)] (1) 

is a maximum (over allIin the set S). Here PM(M) == fdLPL(L)P(MIL) is the pdf 
of the output signal vector M. R is identical to the average mutual information 
between Land M. 
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To understand better how the info max principle may be applied to biological systems 
and complex synthetic networks, it is useful to solve the infomax optimization 
problem explicitly for simpler systems whose properties are nonetheless biologically 
motivated. This paper therefore deals with the practical computation of infomax 
solutions for cases in which the mappings! are constrained to be linear. 

INFOMAX SOLUTIONS FOR A SET OF LINEAR FILTERS 

We consider the case of linear model "neurons" with multivariate Gaussian input 
and additive Gaussian noise. There are N input (L) cells and N' output (M) cells. 
The input column vector L = (Lt,~, ... ,LNF is randomly selected from an 
N-dimensional Gaussian distribution having mean zero. That is, 

(2) 

where QL is the covariance matrix of the input activities, Q6 = J dL PL(L)LjLj • 

(Superscript T denotes the matrix transpose.) 

To specify the set S of allowed mappings !:L .... M, we define a processing model 
that includes a description of (i) how noise enters during processing, (ii) the 
independent variables over which we are to maximize R, and (iii) any constraints 
on their values. Figure 1 shows several such models. We shall analyze the simplest, 
then explain the motivation for the more complex models and analyze them in turn. 

Model A -- Additive noise of constant variance 

In Model A of Fig. 1 the output signal value of the nth M cell is: 

(3) 

The noise components "11 are independently and identically distributed (fli.i.d. ") 
random variables drawn from a Gaussian distribution having a mean of zero and 
variance B. 

Each mapping !:L .... M is characterized by the values of the {Cnj} and the noise 
parameter B. The elements of the covariance matrix of the output activities are 
(using Eqn. 3) 

(4) 

where ~nm = 1 if n = m and 0 otherwise. 

Evaluating Eqn. 1 for this processing model gives the information rate: 

R(j) = (1/2) In Det W(j) (5) 

where ~m = Q:!'/ B. (R is the difference of two entropy terms. See [Shannon, 
1949], p.57, for the entropy of a Gaussian distribution.) 
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If the components Cni of the C matrix are allowed to be arbitrarily large, then the 
information rate can be made arbitrarily large, and the effects of noise become 
arbitrarily small. One way to limit C is to impose a "resource constraint" on each 
M cell. An example of such a constraint is ~jqj = 1 for all n. One can then attempt 
directly, using numerical methods, to maximize Eqn. 5 over all allowed C for given 
B. However, when some additional conditions (below) are satisfied, further 
analytical progress can be made. 

Suppose the NL-cells are uniformly spaced along the line interval [0,1] with periodic 
boundary conditions, so that cell N is next to cell 1. [The analysis can be extended 
to a two- (or higher-) dimensional array in a straightforward manner.] Suppose also 
that (for given N) the covariance Q6 of the input values at cells i and j is a function 
QL(Sj) only of the displacement s'J from i to j. (We deal with the periodicity by 
defining Sab = b - a - Ya~ and choosing the integer Yab such that 
-N/2 S Sab < N/2.) Then QL is a Toeplitz matrix, and its eigenvalues {Ak} are the 
components of the discrete Fourier transform ("F.T.") of QL(S): 

Ak = ~sQL(s) exp( -2~ks/N), (-N/2) S k < N/2. (6) 

We now impose two more conditions: (1) N' = N. This simplifies the resulting 
expressions, but is otherwise inessential, as we shall discuss. (2) We constrain each 
M cell to have the same arrangement of C-values relative to the M cell's position. 
That is, Cnj is to be a function C(Sni) only of the displacement Sni from n to i. This 
constraint substantially reduces the computational demands. We would not expect 

Figure 1. 

L· I 

L· I 
(S,C) 

(D) 

Four processing models (A)-(D): Each diagram shows a single 
M cell (indexed by n) having output activity Mn. Inputs {LJ may 
be common to many M cells. All noise contributions (dotted 
lines) are uncorrelated with one another and with {LJ. GC = 
gain control (see text). 
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it to hold in general in a biologically realistic model -- since different M cells should 
be allowed to develop different arrangements of weights -- although even then it 
could be used as an Ansatz to provide a lower bound on R. The section, 
"Temporally-correlated input patterns," deals with a situation in which it is 
biologically plausible to impose this constraint. 

Under these conditions, (Q:!') is also a Toeplitz matrix. Its eigenvalues are the 
components of the F.T. of QM(snm). For N' = N these eigenvalues are (B + A~k) , 
where Zk = ICkl2 and Ck == ~sC(s) exp( -2'TT~ks/N) is the F.T. of C(s). [This 
expression for the eigenvalues is obtained by rewriting Eqn. 4 as: 
QM(snm) = B8n_m.o + ~j.jC(snJQL(Sj)C(sm) ,and taking the F.T. of both sides.] 
Therefore 

R = (1/2)~k In[l + AJcZk/ B]. (7) 

We want to maximize R subject to ~sC(S)2 = 1, which is equivalent to ~Zk = N . 
Using the Lagrange multiplier method, we maximize A == R + 11-(~Zk - N) over all 
nonnegative {Zk}' Solving for (JA/ (JZk = 0 and requiring Zk ~ 0 for all k gives the 
solution: 

Zk = max[( -1/211-) - (B/Ak)' 0], (8) 

where (given B) 11- is chosen such that ~Zk = N. 

Note that while the optimal {Zk} are uniquely determined, the phases of the {ck} are 
completely arbitrary [except that since the {C(s)} are real, we must have Ck * = c_k 

for all k]. The {C(s)} values are therefore not uniquely determined. Fig. 2a shows 
two of the solutions for .an example in which QL(S) = exp[ - (s/ So)2] with So = 6, 
N=N'=64, and B.:..:.l. Both solutions have ZO.±1 .. .. . ±6=5.417, 5.409, 5.378, 
5.306, 5.134,4.689,3.376, and all other Zk == O. Setting all Ck phases to zero yields 
the solid curve; a particular random choice of phases yields the dotted dHve. We 
shall later see that imposing locality conditions on the {C(s)} (e.g., penalizing 
nonzero C(s) for large I s I) can remove the phase ambiguity. 

Our solution (Eqn. 8) can be described in terms of a so-called "water-filling" 
analogy: If one plots B /Ak versus k, then Zk is the depth of "water" at k when one 
"pours" into the "vessel" defined by the B / Ak curve a total quantity of "water" that 
corresponds to ~Zk = N and brings the "water level" to ( -1/211-). 

Let us contrast this problem with two other problems to which the "water-filling" 
analogy has been applied in the information-theory literature. In our notation, they 
are: 

1. Given a transfer function {C(s)} and the noise variance B, how should a given 
total input signal power ~Ak be apportioned among the various wavenumbers 
k so as to maximize the information rate R [Gallager, 1968]? Our problem is 
complementary to this: we fix the input signal properties and seek an optimal 
transfer function subject to constraints. 
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2. Rate-distortion (R-D) calculation [Berger, 1971]: Given a distortion measure 
(that defines a "distance" between the actual input signal and an estimate of it 
that can be reconstructed from the channel's output), and the input power 
spectrum p.k}, what choice of {Zk} minimizes the average distortion for given 
information rate (or minimizes the required rate for given distortion)? In the 
R-D problem there is a process of reconstruction, and a given measure for 
assessing the "goodness" of reconstruction. In contrast, in our network there 
is no reconstruction of the input signal, and no criterion of the "goodness" of 
such a hypothetical reconstruction is provided. 

Note also that infomax optimization is not the same as computing which channel 
(that is, which mapping !:L .... M) selected from an allowed set has the maximum 
information-theoretic capacity. In that problem, one is free to encode the inputs 
before transmission so as to make optimal use of (Le., "achieve the capacity of") the 
channel. In our case, there is no such pre-encoding; the input ensemble is prescribed 
(by the environment or by the output of an earlier processing stage) and we need to 
maximize the channel rate for that ensemble. 

The simplifying condition that N = N' (above) is unnecessarily restrictive. Eqn. 7 
can be easily generalized to the case in which N is a mUltiple of N' and the N' M cells 
are uniformly spaced on the unit interval. Moreover, in the limit that 1/ N' is much 
smaller than the correlation length scale of QL, it can be shown that R is unchanged 
when we simultaneously increase N' and B by the same factor. (For example, two 
adjacent M cells each having noise variance 2B jointly convey the same information 

Figure 2. 
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Example infomax solutions C(s) for locally-correlated 
inputs: (a) Model A; region of nonnegligible C(s) extends over 
all s; phase ambiguity in Ck yields non unique C(s) solutions, two 
of which are shown. See text for details. (b) Models C (solid 
curve) and D (dotted curve) with Gaussian g(S)-l favoring short 
connections; shows center-surround receptive fields, more 
pronounced in Model D. (c) "Temporal receptive field" using 
Model D for temporally correlated scalar input to a single M cell; 
C(s) is the weight applied to the input signal that occurred s time 
steps ago. Spacing between ordinate marks is 0.1; ~ C(S)2 = 1 in 
each case. 

c 
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about L as one M cell having noise variance B.) For biological applications we are 
mainly interested in cases in which there are many L cells [so that C(s) can be 
treated as a function of a continuous variable] and many M cells (so that the effect 
of the noise process is described by the single parameter B/ N). 

The analysis so far shows two limitations of Model A. First, the constraint 
~iqi = 1 is quite arbitrary. (It certainly does not appear to be a biologically natural 
constraint to impose!) Second, for biological applications we are interested in 
predicting the favored values of {C(s)}, but the phase ambiguity prevents this. In 
the next section we show that a modified noise model leads naturally, without 
arbitrary constraints on ~iqi' to the same results derived above. We then turn to a 
model that favors local connections over long-range ones, and that resolves the 
phase ambiguity issue. 

Model B -- Independent noise on each input line 

In Model B of Fig. 1 each input Li to the nth M cell is corrupted by Li.d. Gaussian 
noise Vl1i of mean zero and variance B. The output is 

(9) 

Since each Vni is independent of all other noise terms (and of the inputs {Li }), we find 

(10) 

We may rewrite the last term as B~l1m (~iqy!2 (~jc;)l/2. The information rate is 
then R = (1/2) In DetWwhere 

(11) 

Define c' ni == Cl1i(~kqk)-1/2 ; then J¥,.m = ~lIm + (~,.jc'lIiQbC' mj)/ B. Note that this is 
identical (except for the replacement C ~ C') to the expression following Eqn. (5), 
in which QM was given by Eqn. (4). By definition, the {C' nil satisfy ~iC';i = 1 for 
all n. Therefore, the problem of maximizing R for this model (with no constraints 
on ~jq;) is identical to the problem we solved in the previous section. 

Model C -- Favoring of local connections 

Since the arborizations of biological cells tend to be spatially localized in many cases, 
we are led to consider constraints or cost terms that favor localization. There are 
various ways to implement this. Here we present a way of modifying the noise 
process so that the infomax principle itself favors localized solutions, without 
requiring additional terms unrelated to information transmission. 

Model C of Fig. 1 is the same as Model B, except that now the longer connections 
are "noisier" than the shorter ones. That is, the variance of VIIi is <V;i> = B~(sn;) 
where g(s) increases with 1 s I. [Equivalently, one could attenuate the signal on the 
(i ~ n) line by g(sll;) 1/2 and have the same noise variance Bo on all lines.] 
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This change causes the last term of Eqn. 10 to be replaced by Bo8I1m~g(SIl)qi . 
Under the conditions discussed earlier (Toeplitz QL and QM, and N = N), we derive 

(12) 

Recall that the {ck } are related to {C(s)} by a Fourier transform (see just before Eqn. 
7). To cotppute which choice of IC(s)} maximizes R for a given problem, we used 
a gradient ascent algorithm several times, each time using a different random set of 
initial I C(s)} values. For the problems whose solutions are exhibited in Figs. 2b and 
2c, multiple starting points usually yielded the same solution to within the error 
tolerance specified for the algorithm [apart from an arbitrary factor by which all of 
the C(s)'s can be multiplied without affecting R], and that solution had the largest 
R of any obtained for the given problem. That is, a limitation sometimes associated 
with gradient ascent algorithms -- namely, that they may yield multiple "solutions" 
that are local, but far from global, maxima -- did not appear to be a difficulty in these 
cases. 

Fig. 2b (solid curve) shows the infomax solution for an example having 
QL(S) = exp[ - (S/sO)2] and g(s) = exp[(s/s.)2] with So = 4, s. = 6, N = N = 32, 
and Bo = 0.1. There is a central excitatory peak flanked by shallow inhibitory 
sidelobes (and weaker additional oscillations) . (As noted, the negative of this 
solution, having a central inhibitory region and excitatory sidelobes, gives the same 
R.) As Bo is increased (a range from 0.001 to 20 was studied), the peak broadens, 
the sidelobes become shallower (relative to the peak), and the receptive fields of 
nearby M cells increasingly overlap. This behavior is an example of the 
"redundancy-diversity" tradeoff discussed in [Linsker, 1988]. 

Model D -- Bounded output variance 

Our previous models all produce output values Mn whose variance is not explicitly 
constrained. More biologically realistic cells have limited output variance. For 
example, a cell's firing rate must lie between zero and some maximum value. Thus, 
the output of a model nonlinear cell is often taken to be a sigmoid function of 
(~iCII;L)· 

Within the context of linear cell models, we can capture the effect of a bounded 
output variance by using Model D of Fig. 1. We pass the intermediate output 
~iClIi(Li + VIIi) through a gain control QC that normalizes the output variance to 
unity, then we add a final (Li.d. Gaussian) noise term V'II of variance R.. That is, 

(13) 

Without the last term, this model wo~ld be identical to Model C, since mUltiplying 
both the signal and the VIIi noise by the same factor GC would not affect R. The last 
term in effect fixes the number of output values that can be discriminated (Le., not 
confounded with each other by the noise process V'II) to be of order Rl1!2. 

The information rate for this model is derived to be (cf. Eqn. 12): 
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(14) 

where V( C) is the variance of the intermediate output before it is passed through 
GC: 

(15) 

Fig. 2b (dotted curve) shows the infomax solution (numerically obtained as above) 
for the same QL(S) and g(s) functions and parameter values as were used to generate 
the solid curve (for Model C), but with the new parameter Bl = 0.4. The effect of 
the new Bl noise process in this case is to deepen the inhibitory sidelobes (relative 
to the central peak). The more pronounced center-surround character of the 
resulting M cell dampens the response of the cell to differences (between different 
input patterns) in the spatially uniform component of the input pattern. This 
response property allows the L .... M mapping to be info max-optimal when the 
dynamic range of the cells' output response is constrained.· (A competing effect can 
complicate the analysis: If Bl is increased much further, for example to 50 in the 
case discussed, the sidelobes move to larger s and become shallower. This behavior 
resembles that discussed at the end of the previous section for the case of increasing 
Bo; in the present case it is the overall noise level that is being increased when Bl 
increases and Bo is kept constant.) 

TemporaUy-correlated input patterns 

Let us see how infomax can be used to extract regularities in input time series, as 
contrasted with the spatially-correlated input patterns discussed above. We consider 
a single M cell that, at each discrete time denoted by n, can process inputs {LJ from 
earlier times i ~ n (via delay !ines, for example). We use the same Model D as 
before. There are two differences: First, we want g(s) = 00 for all s > 0 (input lines 
from future times are "infinitely noisy"). [A technical point: Our use of periodic 
boundary conditions, while computationally convenient, means that the input value 
that will occur s time steps from now is the same value that occurred (N - s) steps 
ago. We deal with this by choosing g(s) to equal 1 at s = 0, to increase as 
s .... -N/2 (going into the past), and to increase further as s decreases from +N/2 
to 1, corresponding to increasingly remote past times. The periodicity causes no 
unphysical effects, provided that we make g(s) increase rapidly enough (or make N 
large enough) so that C(s) is negligible for time intervals comparable to N.] Second, 
the fact that C,,; is a function only of s'" is now a consequence of the constancy of 
connection weights C(s) of a single M cell with time, rather than merely a convenient 
Ansatz to facilitate the infomax computation for a set of many M cells (as it was in 
previous sections). 

The infomax solution is shown in Fig. 2c for an example having 
QL(S) = exp[ - (S/So)2]; g(s) = exp[ -t(s}/s.J with t(s} = s for s ~ 0 and 
t(s} = s - N for s ~ 1; So = 4, Sl = 6, N = 32, Bo = 0.1, and Bl = 0.4. The result is 
that the "temporal receptive field" of the M cell is excitatory for recent times, and 
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inhibitory for somewhat more remote times (with additional weaker oscillations). 
The cell's output can be viewed approximately as a linear combination of a smoothed 
input and a smoothed first time derivative of the input, just as the output of the 
center-surround cell of Fig. 2b can be viewed as a linear combination of a smoothed 
input and a smoothed second spatial derivative of the input. As in Fig. 2b, setting 
BI = 0 (not shown) lessens the relative inhibitory contribution. 

SUMMARY 

To gain insight into the operation of the principle of maximum information 
preservation, we have applied the principle to the problem of the optimal design of 
an array of linear filters under various conditions. The filter models that have been 
used are motivated by certain features that appear to be characteristic of biological 
networks. These features include the favoring of short connections and the 
constrained range of output signal values. When nearby input signals (in space or 
time) are correlated, the infomax-optimal solutions for the cases studied include (1) 
center-surround cells and (2) cells sensitive to temporal variations in input. The 
results of the mathematical analysis presented here apply also to arbitrary input 
covariance functions of the form QL( I i - j I). We have also presented more general 
expressions for the information rate, which can be used even when QL is not of this 
form. The cases discussed illustrate the operation of the infomax principle in some 
relatively simple but instructive situations. The analysis and results suggest how the 
principle may be applied to more biologically realistic networks and input ensembles. 
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