
GEMINI: GRADIENT ESTIMATION
THROUGH MATRIX INVERSION

AFTER NOISE INJECTION

Yann Le Cun 1 Conrad C. Galland and Geoffrey E. Hinton
Department of Computer Science

University of Toronto
10 King's College Rd

Toronto, Ontario M5S 1A4
Canada

ABSTRACT

Learning procedures that measure how random perturbations of unit ac­
tivities correlate with changes in reinforcement are inefficient but simple
to implement in hardware. Procedures like back-propagation (Rumelhart,
Hinton and Williams, 1986) which compute how changes in activities af­
fect the output error are much more efficient, but require more complex
hardware. GEMINI is a hybrid procedure for multilayer networks, which
shares many of the implementation advantages of correlational reinforce­
ment procedures but is more efficient. GEMINI injects noise only at the
first hidden layer and measures the resultant effect on the output error.
A linear network associated with each hidden layer iteratively inverts the
matrix which relates the noise to the error change, thereby obtaining
the error-derivatives. No back-propagation is involved, thus allowing un­
known non-linearities in the system. Two simulations demonstrate the
effectiveness of GEMINI.

OVERVIEW
Reinforcement learning procedures typically measure the effects of changes in lo­

cal variables on a global reinforcement signal in order to determine sensible weight
changes. This measurement does not require the connections to be used backwards
(as in back-propagation), but it is inefficient when more than a few units are in­
volved. Either the units must be perturbed one at a time, or, if they are perturbed
simultaneously, the noise from all the other units must be averaged away over a
large number of samples in order to achieve a reasonable signal to noise ratio. So
reinforcement learning is much less efficient than back-propagation (BP) but much
easier to implement in hardware.

GEMINI is a hybrid procedure which retains many of the implementation advan­
tages of reinforcement learning but eliminates some of the inefficiency. GEMINI
uses the squared difference between the desired and actual output vectors as a
reinforcement signal. It injects random noise at the first hidden layer only, caus­
ing correlated noise at later layers. If the noise is sufficiently small, the resultant

1 First Author's present address: Room 4G-332, AT&T Bell Laboratories, Crawfords Corner
Rd, Holmdel, NJ 07733

141

142 Le Cun, Galland and Hinton

change in the reinforcement signal is a linear function of the noise vector at any
given layer. A matrix inversion procedure implemented separately at each hidden
layer then determines how small changes in the activities of units in the layer affect
the reinforcement signal. This matrix inversi?n gives a much more accurate esti­
mate of the error-derivatives than simply averaging away the effects of noise and,
unlike the averaging approach, it can be used when the noise is correlated.

The matrix inversion at each layer can be performed iteratively by a local linear
network that "learns" to predict the change in reinforcement from the noise vector at
that layer. For each input vector, one ordinary forward pass is performed, followed
by a number of forward passes each with a small amount of noise added to the total
inputs of the first hidden layer. After each forward pass, one iteration of an LMS
training procedure is run at each hidden layer in order to improve the estimate of
the error-derivatives in that layer. The number of iterations required is comparable
to the width of the largest hidden layer. In order to avoid singularities in the
matrix inversion procedure, it is necessary for each layer to have fewer units than
th~ preceding one.

In this hybrid approach, the computations that relate the perturbation vectors
to the reinforcement signal are all local to a layer. There is no detailed back­
propagation of information, so that GEMINI is more amenable to optical or elec­
tronic implementations than BP. The additional time needed to run the gradient­
estimating inner loop, may be offset by the fact that only forward propagation is
required, so this can be made very efficient (e.g. by using analog or optical hard­
ware).

TECHNIQUES FOR GRADIENT ESTIMATION
The most obvious way to measure the derivative of the cost function w.r.t the

weights is to perturb the weights one at a time, for each input vector, and to
measure the effect that each weight perturbation has on the cost function, C. The
advantage of this technique is that it makes very few assumptions about the way
the network computes its output.

It is possible to use far fewer perturbations (Barto and Anandan, 1985) if we are
using "quasi-linear" units in which the output, Yi, of unit i is a smooth non-linear
function, I, of'its total input, Xi, and the total input is a linear function of the
incoming weights, Wij and the activities, Yi, of units in the layer below:

Xi = L WijYj

i

Instead of perturbing the weights, we perturb the total input, Xi, received by each
unit, in order to measure 8C / 8Xi . Once this derivative is known it is easy to
derive 8C / 8Wij for each of the unit's incoming weights by performing a simple local
compu tation:

8C 8C __ -_yo
8W ij - 8Xi J

If the units are perturbed one at a time, we can approximate 8C / 8Xi by

GEMINI 143

where 6C is the variation of the cost function induced by a perturbation 6Xi of the
total input to unit i. This method is more efficient than perturbing the weights
directly, but it still requires as many forward passes as there are hidden units.

Reducing the number of perturbations required
If the network has a layered, feed-forward, architecture the state of any single layer

completely determines the output. This makes it possible to reduce the number of
required perturbations and forward passes still further . Perturbing units in the first
hidden layer will induce perturbations at the following layers, and we can use these
induced perturbations to compute the gradients for these layers. However, since
many of the units in a typical hidden layer will be perturbed simultaneously, and
since these induced perturbations will generally be correlated, it is necessary to do
some local computation within each layer in order to solve the credit assignment
problem of deciding how much of the change in the final cost function to attribute
to each of the simultaneous perturbations within the layer . This local computation
is relatively simple. Let x(k) be the vector of total inputs to units in layer k. Let
6xt(k) be the perturbation vector of layer k at time t. It does not matter for the
following analysis whether the perturbations are directly caused (in the first hidden
layer) or are induced. For a given state of the network, we have:

To compute the gradient w.r.t. layer k we must solve the following system for g,c

t = 1. .. P

where P is the number of perturbations. Unless P is equal to the number of units
in layer k, and the perturbation vectors are linearly independent, this system will
be over- or under-determined. In some network architectures it is impossible to
induce nl linearly independent perturbation vectors in a hidden layer, I containing
nl units. This happens when one of the preceding hidden layers, k, contains fewer
units because the perturbation vectors induced by a layer with nk units on the
following layer generate at most nk independent directions. So to avoid having to
solve an under-determined system, we require "convergent" networks in which each
hidden layer has no mbre units than the preceding layer.

Using a Special Unit to Allocate Credit within a Layer
Instead of directly solving for the 8C/8xi within each layer, we can solve the same

system iteratively by minimizing:

E = I)6Ct - gf6xt(k))2
t

144 Le Cun, Galland and Hinton

D

D

o o o input layer

Figure 1: A GEMINI network.

linear
unit

linear
unit

This can be done by a special unit whose inputs are the perturbations of layer
k and whose desired output is the resulting perturbation of the cost function 6C
(figure 1). When the LMS algorithm is used, the weight vector gk of this special
unit converges to the gradient of C with respect to the vector of total inputs x(k).
If the components of the perturbation vector are uncorrelated, the convergence will
be fast and the number of iterations required should be of the order of the the
number of units in the layer. Each time a new input vector is presented to the main
network, the "inner-loop" minimization process that estimates the 8C / 8Xi must
be re-initialized by setting the weights of the special units to zero or by reloading
approximately correct weights from a table that associates estimates of the 8C / 8Xi
with each input vector .

Summary of the Gemini Algorithm
1. Present an input pattern and compute the network state by forward propagation.

2. Present a desired output and evaluate the cost function.

3. Re-initialize the weights of the special units.

4. Repeat until convergence:
(a) Perturb the first hidden layer and propagate forward.
(b) Measure the induced perturbations in other layers and the output cost function.
(c) At each layer apply one step of the LMS rule on the special units to minimize

the error between the predicted cost variation and the actual variation.

5. Use the weights of the special units (the estimates of 8C /8Xi) to compute the
weight changes of the main network.

6. Update the weights of the main network .

GEMINI 145

A TEST EXAMPLE: CHARACTER RECOGNITION
The GEMINI procedure was tested on a simple classification task using a network

with two hidden layers. The input layer represented a 16 by 16 binary image of
a handwritten digit. The first hidden layer was an 8 by 8 array of units that
were locally connected to the input layer in the following way: Each hidden unit
connected to a 3 by 3 "receptive field" of input units and the centers of these
receptive fields were spaced two "pixels" apart horizontally and vertically. To avoid
boundary effects we used wraparound which is unrealistic for real image processing.
The second hidden layer was a 4 by 4 array of units each of which was connected to
a 5 by 5 receptive field in the previous hidden layer. The centers of these receptive
fields were spaced two pixels apart. Finally the output layer contained 10 units,
one for each digit, and was fully connected to the second hidden layer. The network
contained 1226 weights and biases.

The sigmoid function used at each node was of the form f(x) = stanh(mx) with
m = 2/3 and s = 1.716, thus f was odd, and had the property that f(l) = 1
(LeCun, 1987). The training set was composed of 6 handwritten exemplars of each
of the 10 digits. It should be emphasized that this task is simple (it is linearly
separable), and the network has considerably more weights than are required for
this problem.

Experiments were performed with 64 perturbations in the gradient estimation
inner loop. Therefore, assuming that the perturbation vectors were linearly inde­
pendent, the linear system associated with the first hidden layer was not under­
constrained 2. Since a stochastic gradient procedure was used with a single sweep
through the training set, the solution was only a rough approximation, though con­
vergence was facilitated by the fact that the components of the perturbations were
statistically independent.

The linear systems associated with the second hidden layer and the output layer
were almost certainly overconstrained 3, so we expected to obtain a better estimate
of the gradient for these layers than for the first one. The perturbations injected at
the first hidden layer were independent random numbers with a zero-mean gaussian
distribution and standard deviation of 0.1.

The minimization procedure used for gradient estimation was not a pure LMS,
but a pseudo-newton method that used a diagonal approximation to the matrix of
second derivatives which scales the learning rates for each link independently (Le
Cun, 1987; Becker and Le Cun, 1988). In our case, the update rule for a gradient
estimate coefficient was

where a'[is an estimate of the variance of the perturbation for unit i. In the
simulations TJ was equal to 0.02 for the first hidden layer, 0.03 for the second hidden
layer, and 0.05 for the output layer. Although there was no real need for it, the
gradient associated-with the output units was estimated using GEMINI so that we
could evaluate the accuracy of gradient estimates far away from the noise-injection

2Jt may have been overconstrained since the actual relation between the perturbation and
variation of the cost function is usually non-linear for finite perturbations

3This depends on the degeneracy of the weight matrices

146 Le Cun, Galland and Hinton

B.1

B +---~--~--~---r---r---+---+--~--~---4~~
12

Figure 2: The mean squared error as a function of the number of sweeps
through the training set for GEMINI (top curve) and BP (bottom curve).

layer. The learning rates for the main network, fi, had different values for each unit
and were equal to 0.1 divided by the fan-in of the unit.

Figure 2 shows the relative learning rates of BP and GEMINI. The two runs were
started from the same initial conditions. Although the learning curve for GEMINI
is consistently above the one for BP and is more irregular, the rate of decrease of
the two curves is similar. The 60 patterns are all correctly classified after 10 passes
through the training set for regular BP, and after 11 passes for GEMINI. In the
experiments, the direction of the estimated gradient for a single pattern was within
about 20 degrees of the true gradient for the output layer and the second hidden
layer, and within 50 degrees for the first hidden layer. Even with such inaccuracies
in the gradient direction, the procedure still converged at a reasonable rate.

LEARNING TO CONTROL A SIMPLE ROBOT ARM
In contrast to the digit recognition task, the robot arm control task considered

here is particularily suited to the GEMINI procedure because it contains a non­
linearity which is unknown to the network. In this simulation, a network with 2
input units, a first hidden layer with 8 units, a second with 4 units, and an output
layer with 2 units is used to control a simulated arm with two angular degrees of
freedom. The problem is to train the network to receive x, y coordinates encoded
on the two input units and produce two angles encoded on the output units which
would place the end of the arm on the desired input point (figure 3). The units use
the same input-output function as in the digit recognition example.

Cost. (Euclidean disl. 10 adual point?

t
ROBOT ARM

"unknown" non-lIne.rlty

t
91 92

00
o oto 0

000 O~O 0 0 0
00

(a) Jl y

GEMINI 147

(x,y)

(b)

Figure 3: (a) The network trained with the GEMINI procedure, and (b)
the 2-D arm controlled by the network.

Each point in the training set is successively applied to the inputs and the resultant
output angles determined. The training points are chosen so that the code for the
output angles exploits most of the sigmoid input-output curve while avoiding the
extreme ends. The "unknown" non-linearity is essentially the robot arm, which
takes the joint angles as input and then "outputs" the resulting hand coordinates
by positioning itself accordingly. The cost function, C, is taken as the square of
the Euclidean distance from this point to the desired point. In the simulation, this
distance is determined using the appropriate trigonometric relations:

where al and a2 are the lengths of the two components of the arm. Although
this non-linearity is not actually unknown, analytical derivative calculation can be
difficult in many real world applications, and so it is interesting to explore the
possibility of a control system that can learn without it.

It is found that the minimum number of iterations of the LMS inner loop search
needed to obtain good estimates ofthe gradients when compared to values calculated
by back-propagation is between 2 and 3 times the number of units in the first hidden
layer (figure 4). For this particular kind of problem, the process can be sped up
significantly by using the following two modifications. The same training vector
can be applied to the inputs and the weights changed repeatedly until the actual
output is within a certain radius of the desired output. The gradient estimates
are kept between these weight updates, thereby reducing the number of inner loop

148 Le Cun, Galland and Hinton

Figure 4: Gradients of the units in all non-input layers, determined
(a) by the GEMINI procedure after 24 iterations of the gradient
estimating inner loop, and (b) through analytical calculation.
The size of the black and white squares indicates the magnitude of
negative and positive error gradients respectively.

iterations needed at each step. The second modification requires that the arm be
made to move continuously through 2-D space by using an appropriately ordered
training set. The state of the network changes slowly as a result, leading to a slowly
varying gradient. Thus, if the gradient estimate is not reset between successive
input vectors, it can track the real gradient, allowing the number of iterations per
gradient estimate to be reduced to as little as 5 in this particular network.

The results of simulations using training sets of closely spaced points in the first
quadrant show that GEMINI is capable of training this network to correctly orient
the simulated arm, with significantly improved learning efficiency when the above
two modifications are employed. Details of these simulation results and the param­
eters used to obtain them are given in (Galland, Hinton, and Le Cun, 1989).

Acknowledgements
This research was funded by grants from the Ontario Information Technology

Research Center, the Fyssen Foundation, and the National Science and Engineer­
ing Research Council. Geoffrey Hinton is a fellow of the Canadian Institute for
Advanced Research.

References
A. G. Barto and P. Anandan (1985) Pattern recognizing stochastic learning au­
tomata. IEEE Transactions on Systems, Man and Cybernetics, 15, 360-375.

S. Becker and Y. Le Cun (1988) Improving the convergence of back-propagation
learning with second order methods. In Touretzky, D. S., Hinton, G. E. and Se­
jnowski, T. J., editors, Proceedings of the 1988 Connectionist Summer School, Mor­
gan Kauffman: Los Altos, CA.

C. C. Galland, G. E. Hinton and Y. Le Cun (1989) Technical Report, in preparation.

Y. Le Cun (1987) Modeles Connexionnistes de l'Apprentissage. Doctoral thesis,
University of Paris, 6.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams (1986) Learning internal repre­
sentations by back-propagating errors. Nature, 323, 533-536.

