
A MASSIVELY PARALLEL SELF-TUNING
CONTEXT-FREE PARSER!

Eugene Santos Jr.
Department of Computer Science

Brown University
Box 1910, Providence, RI 02912

eSj@cs.brown.edu

ABSTRACT

The Parsing and Learning System(PALS) is a massively
parallel self-tuning context-free parser. It is capable of
parsing sentences of unbounded length mainly due to its
parse-tree representation scheme. The system is capable
of improving its parsing performance through the
presentation of training examples.

INTRODUCTION

Recent PDP research[Rumelhart et al .• 1986; Feldman and Ballard, 1982;
Lippmann, 1987] involving natural language processtng[Fanty, 1988;
Selman, 1985; Waltz and Pollack, 1985] have unrealistically restricted
sentences to a fixed length. A solution to this problem was presented in
the system CONPARSE[Charniak and Santos. 1987]. A parse-tree
representation scheme was utilized which allowed for processing
sentences of any length. Although successful as a parser. it's achitecture
was strictly hand-constructed with no learning of any form. Also.
standard learning schemes were not appUcable since it differed from all
the popular architectures, in particular. connectionist ones.

In this paper. we present the Parsing and Learning System(PALS) which
attempts to integrate a learning scheme into CONPARSE. It basically
allows CONPARSE to modify and improve its parsing capability.

IThis research was supported in part by the Office of Naval Research under
contract NOOOI4-79-C-0592, the National Science Foundation under contracts
IST-8416034 and IST-8515005, and by the Defense Advanced Research Projects
Agency under ARPA Order No. 4786.

537

538 Santos

REPRESENTATION OF PARSE TREE

A parse-tree Is represented by a matrix where the bottom row consists of
the leaves of the tree In left-to-right order and the entries In each
column above each leaf correspond to the nodes In the path from leaf to
root. For example, looking at the simple parse-tree for the sentence
"noun verb noun", the column entries for verb would be verb, vp. and S.
(see Figure 1) (As In previous work, PALS takes part -of-speech as input,
not words.)

S

S ,..S """'IIIl VP

NP VP NP

noun ... verb..oil noun

Figure 1. Parse tree as represented by a collection of columns in the
matrix.

In addition to the columns of nontermlnals. we introduce the binder
entries as a means of easily determining whether two Identical
nonterminals in adjacent columns represent the same nonterminal in a
parse tree (see Figure 2).

, S

S -S /
~VP

NP VP / NP

noun verb noun

s
~

NP VP

I '" noun verb NP

noL

Figure 2. Parse tree as represented by a collection of columns in the
matrix plus binders.

To distributively represent the matrix. each entry denotes a collection of
labeled computational units. The value of the entry is taken to be the
label of the unit with the largest value.

A Massively Parallel Self-Tuning Context-Free Parser 539

A nontenninal entry has units which are labeled with the nontenninals
of a language plus a special label ''blank''. When the "blank" unit is
largest, this indicates that the entry plays no part in representing the
current parse tree.

A binder entry has units which are labeled from 1 to the number of rows
in the matrix. A unit labeled k then denotes the binding of the
nontenninal entry on its immediate left to the nontenninal entry in the
kth row on its right. To indicate that no binding exists, we use a special
unit label "e" called an edge.

In general, it is easiest to view an entry as a vector of real numbers where
each vector component denotes some symbol. (For more infonnation see
[Charntak and Santos, 1987].)

In the current implementation of PALS, entry unit values range from 0 to
1. The ideal value for entry units is thus 1 for the largest entry unit and 0
for all remaining entry units. We essentially have "1" being "yes" and "0"
being no.

LANGUAGE RULES

In order to determine the values of the computational units mentioned in
the previous section, we apply a set of language rules. Each
compuatatlonal unit will be detenntned by some subset of these rules.

Each language rule is represented by a single node, called a rule node. A
rule node takes its input from several computational units and outputs to
a Single computational unit.

The output of each rule node is also modified by a non-negative value
called a rule-weight. This weight represents the applicability of a
language rule to the language we are attempting to parse (see PARSING).
In the current implementation of PALS, rule-weight values range from 0
to 1 being similar to probabilities.

Basically, a rule node attempts to express some rule of grammar. As with
CONPARSE, PALS breaks context-free grammars into several subrules.
For example, as part of S --> NP VP, PALS would have a rule stating that
an NP entry would like to have an S immediately above it in the same
column. Our rule for this grammar rule will then take as input the entry's
computational unit labeled NP and output to the unit labeled S in the
entry immediately above(see Figure 3).

540 Santos

Entry iJ

Rule-Node

Entry i-l,j

Figure 3. A rule node for S above NP.

As a more complex example, if an entry is a NP, the NP does not continue
right. I.e .. has an edge, and above is an S that continues to the right. then
below the second S is a VP.

In general. to determine a unit's value, we take all the rule nodes and
combine their influences. This will be much clearer when we discuss
parsing in the next section.

PARSING

Since we are dealing with a PDP-type architecture, the size of our matrix
is fixed ahead of time. However. the way we use the matrix
representation scheme allows us to handle sentences of unbounded
length as we shall see.

The system parses a sentence by taking the first word and placing it in
the lower rightmost entry; it then attempts to construct the column
above the word by using its rule nodes. Mter this processing. the system
shifts the first word and its column left and inserts the second word. Now
both words are processed simultaneously. This shifting and processing
continues until the last word is shifted through the matrix (see Figure 4).
Since sentence lengths may exceed the size of the matrix. we are only
processing a portion at a time. creating partial parse-trees. The complete
parse-tree is the combination of these partial ones.

A Massively Parallel Self-Tuning Context-Free Parser 541

8

NP

noun notDl verb

t,f8

8 1- 1-8 8 -~8 /
t,fVP

NP VP NP VP / NP

noun verb noun n01Dl verb notDl

Figure 4. Parsing of noun verb noun.

Basically, the system builds the tree in a bottom-up fashion. However, it
can also build left-right, right-left, and top-down since columns may be
of differing height. In general, columns on the left in the matrix will be
more complete and hence possibly higher than those on the right.

LEARNING

The goal of PALS is to learn how to parse a given language. Given a
system consisting of a matrix with a set of language rules. we learn
parsing by determining how to apply each language rule.

In general, when a language rule is inconsistent with the language we are
learning to parse, its corresponding rule-weight drops to zero, essentially
disconnecting the rule. When a language rule is consistent, its rule­
weight then approaches one.

In PALS, we learn how to parse a sentence by using training examples.
The teacher/trainer gives to the system the complete parse tree of the
sentence to be learned.

Because of the restrictions imposed by our matrix, we may be unable to
fully represent the complete parse tree given by the teacher. To learn how
to parse the sentence, we can only utilize a portion of the complete parse
tree at anyone time.

Given a complete parse tree. the system simply breaks it up into
manageable chunks we call snapshots. Snapshots are matrices which
contain a portion of the complete parse tree.

Given this sequence of snapshots, we present them to the system in a
fashion Similar to parsing. The only difference is that we clamped the

542 Santos

snapshot to the system matrix while it fires its rule nodes. From this, we
can easily detenntne whether a rule node has incorrectly fired or not by
seeing if it fired consistently with given snapshot. We punish and reward
accordingly.

As the system is trained more and more, our rule-weights contain more
and more information. We would like the rule-weights of those rules used
frequently during training to not change as much as those not frequently
used. This serves to stabilize our knowledge. It also prevents the system
from being totally corrupted when presented with an incorrect training
example.

As in traditional methods, we find the new rule-weights by minimizing
some function which gives us our desired learning. The function which
captures this learning method is

Lt,j {CfJ (Clf.,j - �~�i�,�j�)2 + [�~�,�j� �~�i�,�j� + (1 - �~�,�j�) (1 - �~�i�J�) I 2 ri,j2}

where i are the unit labels for some matrix entry. j are the language rules
associated with units i, (l1.j are the old rule-weights. �~�i�,�j� are the new rule­
weights, ci,J is the knowledge preservation coefficient which is a
function of the frequency that language rule j for entry unit i has been
fired during learning. ri.j is the unmodified rule output using snapshot as
input, and Si,j is the measure of the correctness of language rule j for unit
1.

RESULTS
In the current implementation of PALS, we utilize a 7x6 matrix and an
average of fifty language rules per entry unit to parse English.

Obviously, our set of language rules will determine what we can and
cannot learn. Currently, the system is able to learn and parse a modest
subset of the English language. It can parse sentences with moderate
sentence embedding and phrase attachment from the following
grammar:

SM
S
NP

NP
PP
WHCL
S/NP
S/NP

--> S per
--> NPVP
--> (det) (adj)* noun (PP)* (WHCL)

(INFPI)
--> INFP2
--> prep NP
--> that S/NP
-->VP
--> NP VP/NP

