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ABSTRACT 

The Parsing and Learning System(PALS) is a massively 
parallel self-tuning context-free parser. It is capable of 
parsing sentences of unbounded length mainly due to its 
parse-tree representation scheme. The system is capable 
of improving its parsing performance through the 
presentation of training examples. 

INTRODUCTION 

Recent PDP research[Rumelhart et al .• 1986; Feldman and Ballard, 1982; 
Lippmann, 1987] involving natural language processtng[Fanty, 1988; 
Selman, 1985; Waltz and Pollack, 1985] have unrealistically restricted 
sentences to a fixed length. A solution to this problem was presented in 
the system CONPARSE[Charniak and Santos. 1987]. A parse-tree 
representation scheme was utilized which allowed for processing 
sentences of any length. Although successful as a parser. it's achitecture 
was strictly hand-constructed with no learning of any form. Also. 
standard learning schemes were not appUcable since it differed from all 
the popular architectures, in particular. connectionist ones. 

In this paper. we present the Parsing and Learning System(PALS) which 
attempts to integrate a learning scheme into CONPARSE. It basically 
allows CONPARSE to modify and improve its parsing capability. 

IThis research was supported in part by the Office of Naval Research under 
contract NOOOI4-79-C-0592, the National Science Foundation under contracts 
IST-8416034 and IST-8515005, and by the Defense Advanced Research Projects 
Agency under ARPA Order No. 4786. 
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REPRESENTATION OF PARSE TREE 

A parse-tree Is represented by a matrix where the bottom row consists of 
the leaves of the tree In left-to-right order and the entries In each 
column above each leaf correspond to the nodes In the path from leaf to 
root. For example, looking at the simple parse-tree for the sentence 
"noun verb noun", the column entries for verb would be verb, vp. and S. 
(see Figure 1) (As In previous work, PALS takes part -of-speech as input, 
not words.) 
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Figure 1. Parse tree as represented by a collection of columns in the 
matrix. 

In addition to the columns of nontermlnals. we introduce the binder 
entries as a means of easily determining whether two Identical 
nonterminals in adjacent columns represent the same nonterminal in a 
parse tree (see Figure 2). 
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Figure 2. Parse tree as represented by a collection of columns in the 
matrix plus binders. 

To distributively represent the matrix. each entry denotes a collection of 
labeled computational units. The value of the entry is taken to be the 
label of the unit with the largest value. 
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A nontenninal entry has units which are labeled with the nontenninals 
of a language plus a special label ''blank''. When the "blank" unit is 
largest, this indicates that the entry plays no part in representing the 
current parse tree. 

A binder entry has units which are labeled from 1 to the number of rows 
in the matrix. A unit labeled k then denotes the binding of the 
nontenninal entry on its immediate left to the nontenninal entry in the 
kth row on its right. To indicate that no binding exists, we use a special 
unit label "e" called an edge. 

In general, it is easiest to view an entry as a vector of real numbers where 
each vector component denotes some symbol. (For more infonnation see 
[Charntak and Santos, 1987].) 

In the current implementation of PALS, entry unit values range from 0 to 
1. The ideal value for entry units is thus 1 for the largest entry unit and 0 
for all remaining entry units. We essentially have "1" being "yes" and "0" 
being no. 

LANGUAGE RULES 

In order to determine the values of the computational units mentioned in 
the previous section, we apply a set of language rules. Each 
compuatatlonal unit will be detenntned by some subset of these rules. 

Each language rule is represented by a single node, called a rule node. A 
rule node takes its input from several computational units and outputs to 
a Single computational unit. 

The output of each rule node is also modified by a non-negative value 
called a rule-weight. This weight represents the applicability of a 
language rule to the language we are attempting to parse (see PARSING). 
In the current implementation of PALS, rule-weight values range from 0 
to 1 being similar to probabilities. 

Basically, a rule node attempts to express some rule of grammar. As with 
CONPARSE, PALS breaks context-free grammars into several subrules. 
For example, as part of S --> NP VP, PALS would have a rule stating that 
an NP entry would like to have an S immediately above it in the same 
column. Our rule for this grammar rule will then take as input the entry's 
computational unit labeled NP and output to the unit labeled S in the 
entry immediately above(see Figure 3). 
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Entry iJ 

Rule-Node 

Entry i-l,j 

Figure 3. A rule node for S above NP. 

As a more complex example, if an entry is a NP, the NP does not continue 
right. I.e .. has an edge, and above is an S that continues to the right. then 
below the second S is a VP. 

In general. to determine a unit's value, we take all the rule nodes and 
combine their influences. This will be much clearer when we discuss 
parsing in the next section. 

PARSING 

Since we are dealing with a PDP-type architecture, the size of our matrix 
is fixed ahead of time. However. the way we use the matrix 
representation scheme allows us to handle sentences of unbounded 
length as we shall see. 

The system parses a sentence by taking the first word and placing it in 
the lower rightmost entry; it then attempts to construct the column 
above the word by using its rule nodes. Mter this processing. the system 
shifts the first word and its column left and inserts the second word. Now 
both words are processed simultaneously. This shifting and processing 
continues until the last word is shifted through the matrix (see Figure 4). 
Since sentence lengths may exceed the size of the matrix. we are only 
processing a portion at a time. creating partial parse-trees. The complete 
parse-tree is the combination of these partial ones. 
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Figure 4. Parsing of noun verb noun. 

Basically, the system builds the tree in a bottom-up fashion. However, it 
can also build left-right, right-left, and top-down since columns may be 
of differing height. In general, columns on the left in the matrix will be 
more complete and hence possibly higher than those on the right. 

LEARNING 

The goal of PALS is to learn how to parse a given language. Given a 
system consisting of a matrix with a set of language rules. we learn 
parsing by determining how to apply each language rule. 

In general, when a language rule is inconsistent with the language we are 
learning to parse, its corresponding rule-weight drops to zero, essentially 
disconnecting the rule. When a language rule is consistent, its rule­
weight then approaches one. 

In PALS, we learn how to parse a sentence by using training examples. 
The teacher/trainer gives to the system the complete parse tree of the 
sentence to be learned. 

Because of the restrictions imposed by our matrix, we may be unable to 
fully represent the complete parse tree given by the teacher. To learn how 
to parse the sentence, we can only utilize a portion of the complete parse 
tree at anyone time. 

Given a complete parse tree. the system simply breaks it up into 
manageable chunks we call snapshots. Snapshots are matrices which 
contain a portion of the complete parse tree. 

Given this sequence of snapshots, we present them to the system in a 
fashion Similar to parsing. The only difference is that we clamped the 
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snapshot to the system matrix while it fires its rule nodes. From this, we 
can easily detenntne whether a rule node has incorrectly fired or not by 
seeing if it fired consistently with given snapshot. We punish and reward 
accordingly. 

As the system is trained more and more, our rule-weights contain more 
and more information. We would like the rule-weights of those rules used 
frequently during training to not change as much as those not frequently 
used. This serves to stabilize our knowledge. It also prevents the system 
from being totally corrupted when presented with an incorrect training 
example. 

As in traditional methods, we find the new rule-weights by minimizing 
some function which gives us our desired learning. The function which 
captures this learning method is 

Lt,j {CfJ ( Clf.,j - �~�i�,�j� )2 + [ �~�,�j� �~�i�,�j� + ( 1 - �~�,�j� ) ( 1 - �~�i�J� ) I 2 ri,j2} 

where i are the unit labels for some matrix entry. j are the language rules 
associated with units i, (l1.j are the old rule-weights. �~�i�,�j� are the new rule­
weights, ci,J is the knowledge preservation coefficient which is a 
function of the frequency that language rule j for entry unit i has been 
fired during learning. ri.j is the unmodified rule output using snapshot as 
input, and Si,j is the measure of the correctness of language rule j for unit 
1. 

RESULTS 
In the current implementation of PALS, we utilize a 7x6 matrix and an 
average of fifty language rules per entry unit to parse English. 

Obviously, our set of language rules will determine what we can and 
cannot learn. Currently, the system is able to learn and parse a modest 
subset of the English language. It can parse sentences with moderate 
sentence embedding and phrase attachment from the following 
grammar: 

SM 
S 
NP 

NP 
PP 
WHCL 
S/NP 
S/NP 

--> S per 
--> NPVP 
--> (det) (adj)* noun (PP)* (WHCL) 

(INFPI) 
--> INFP2 
--> prep NP 
--> that S/NP 
-->VP 
--> NP VP/NP 






