
IMPLICATIONS OF 
RECURSIVE DISTRIBUTED REPRESENTATIONS 

Jordan B. Pollack 
Laboratory for A I Research 

Ohio State University 
Columbus, OH -'3210 

ABSTRACT 

I will describe my recent results on the automatic development of fixed­
width recursive distributed representations of variable-sized hierarchal data 
structures. One implication of this wolk is that certain types of AI-style 
data-structures can now be represented in fixed-width analog vectors. Simple 
inferences can be perfonned using the type of pattern associations that 
neural networks excel at Another implication arises from noting that these 
representations become self-similar in the limit Once this door to chaos is 
opened. many interesting new questions about the representational basis of 
intelligence emerge, and can (and will) be discussed. 

INTRODUCTION 

A major problem for any cognitive system is the capacity for, and the induction of the 
potentially infinite structures implicated in faculties such as human language and 
memory. 
Classical cognitive architectures handle this problem through finite but recursive sets of 
rules, such as fonnal grammars (Chomsky, 1957). Connectionist architectures, while 
yielding intriguing insights into fault-tolerance and machine leaming, have, thus far, not 
handled such productive systems in an adequate fashion. 

So, it is not surprising that one of the main attacks on connectionism, especially on its 
application to language processing models, has been on the adequacy of such systems to 
deal with apparently rule-based behaviors (Pinker & Prince, 1988) and systematicity 
(Fodor & Pylyshyn, 1988). 

I had earlier discussed precisely these challenges for connectionism, calling them the 
generative capacity problem for language, and the representational adequacy problem for 
data structures (Pollack, 1987b). These problems are actually intimately related, as the 
capacity to recognize or generate novel language relies on the ability to represent the 
underlying concept. 
Recently, I have developed an approach to the representation problem, at least for recur­
sive structures like sequences and trees. Recursive auto-associative memory (RAAM) 
(Pollack, 1988a). automatically develops recursive distributed representations of finite 
training sets of such structures, using Back-Propagation (Rumelhart et al., 1986). These 
representations appear to occupy a novel position in the space of both classical and con­
nectionist symbolic representations. 
A fixed-width representation of variable-sized symbolic trees leads immediately to the 
implication that simple fonns of neural-netwolk associative memories may be able to 
perfonn inferences of a type that are thought to require complex machinery such as vari­
able binding and unification. 

But when we take seriously the infinite part of the representational adequacy problem, we 
are lead into a strange intellectual area, to which the second part of this paper is 
addressed. 

527 



528 Pollack 

BACKGROUND 

RECURSIVE AUTO-ASSOCIATIVE MEMORY 

A RAAM is composed of two mechanisms: a compressor, and a reconstructor, which are 
simultaneously trained. The job of the compressor is to encode a small set of fixed-width 
patterns into a single pattern of the same width. This compression can be recursively 
applied, from the bottom up, to a fixed-valence tree with distinguished labeled terminals 
(leaves), resulting in a fixed-width pattern representing the entire structure. The job of 
the reconstructor is to accurately decode this pattern into its parts, and then to further 
decode the parts as necessary, until the tenninal patterns are found, resulting in a recon­
struction of the original tree. 

For binary trees with k-bit binary patterns as the leaves, the compressor could be a 
single-layer feedforward network with 2k inputs and k outputs, along with additional con­
trol machinery. The reconstructor could be a single-layer feedforward-network with k 
inputs and 2k outputs, along with a mechanism for testing whether a pattern is a tenninal. 

We simultaneously train these two networks in an auto-associative framework as follows. 
Consider the tree, «0 (A N»(Y (P (0 N»), as one member of a training set of such trees, 
where the lexical categories are pre-encoded as k-bit vectors. If the 2k-k-2k network is 
successfully trained (defined below) with the following patterns (among other such pat­
terns in the training environment), the resultant compressor and reconstructor can reliably 
fonn representations for these binary trees. 

input pattern hidden pattern output pattern 

A+N ~ RAN(t) ~ A,+N, 
O+RAN(t) ~ RDAN(t) ~ O~RAN(t)' 
D+N ~ RDN(t) ~ O,+N, 
P+RDN(t) ~ RpDN(t) ~ P,+RDN(t), 
Y+RpDN(t) ~ RVPDN(t) ~ Y,+RpDN(t), 
RDAN(t)+RvPDN(t) ~ RDANVPDN<t) ~ RDAN(t)I+RvPDN(t), 

The (initially random) values of the hidden units, Rj(t), are part of the training environ­
ment, so it (and the representations) evolve along with the weights. I 

Because the training regime involves multiple compressions, but only single reconstruc­
tions, we rely on an induction that the reconstructor works. If a reconstructed pattern, say 
RpDN', is sufficiently close to the original pattern, then its parts can be reconstructed as 
well. 

AN EXPERIMENT 

The tree considered above was one member of the first experiment done on RAAM's. I 
used a simple context-free parser to parse a set of lexical-category sequences into a set of 
bracketed binary trees: 

(0 (A (A (A N»» 
«0 N)(P (0 N») 

(Y (0 N» 
(P (0 (A N») 

«0 N) Y) 

1 This ~moving target" strategy is also used by (Elman, 1988) and (Dyer et aI., 1988). 



Implications of Recursive Distributed Representations 529 

«D N) (V (D (A N»») 
«D (A N» (V (P (D N»» 

Each terminal pattern (D A N V & P) was represented as a l-bit-in-5 code padded with 5 
zeros. A 20-10-20 RAAM devised the representations shown in figure I. 

pp 

p 

(P (0 N» 

(P (0 (A N») 

oOOa· ,··00 
DODO' .•. - 0 
0000' .•. ·0 
o· a - .• . 00· 

0·0· . • ·00 D 

· -Do ·0 ' 000 
· ·oD·o·o·O 
· ·0· ·o·oao 
· -0' ·0 · 000 

(A N) • 
(A (A N» .. 000· . D a . 

A A AN' DODO· • • 0 -
«0 N) V) 00·00 D 000· 

«0 N)(V (0 (A N»» o· D • • • • 0 D • 

«0 (A N» (V (P (0 N»» . o· · . 0 . 00 . 

Figure I. 

Representations of all the binary trees in the training set. devised by a 
20-10-20 RAAM. manually clustered by phrase-type. The squares represent 
values between 0 and 1 by area. 

I labeled each tree and its representation by the phrase type in the grammar, and sorted 
them by type. The RAAM, without baving any intrinsic concepts of phrase-type, has 
clearly developed a representation with similarity between members of the same type. 
For example, the third feature seems to be clearly distinguishing sentences from non­
sentences, the fifth feature seems to be involved in separating adjective phrases from oth­
ers, while the tenth feature appears to distinguish prepositional and noun phrases from 
others.2 

At the same time, the representation must be keeping enough information about the sub­
trees in order to allow the reconstructor to accurately recover the original structure. So, 
knowledge about structural regularity flows into the wt:ights while constraints about con­
text similarity guide the development of the representations. 

RECURSIVE DISTRIBUTED REPRESENTATIONS 

These vectors are a very new kind of representation, a recursive, distributed represen­
tation, hinted at by Hinton's (1988) notion of a reduced description. 

They combine aspects of several disparate representations. Like feature-vectors, they are 
fixed-width, similarity-based, and their content is easily accessible. Like symbols, they 
combine only in syntactically well-formed ways. Like symbol-structures, they have con­
stituency and compositionality. And, like pointers. they refer to larger symbol structures 

2 In fact, by these metrics, the test case «D N)(P (D N))) should really be classified as a sentence; since it was 
not used in any other construction, there was no reason for the RAAM to believe otherwise. 



530 Pollack 

which can be efficiently retrieved. 

But. unlike feature-vectors. they compose. Unlike symbols. they can be compared. 
Unlike symbol structures. they are fixed in size. And. unlike pointers. they have content. 

Recursive distributed representations could. potentially. lead to a reintegration of syntax 
and semantics at a very low level3• Rather than having meaning-free symbols which syn­
tactically combine. and meanings which are recursively ascribed. we could functionally 
compose symbols which bear their own meanings. 

IMPLICATIONS 

One of the reasons for the historical split between symbolic AI and fields such as pattern 
recognition or neural networks is that the structured representations AI requires do not 
easily commingle with the representations offered by n-dimensional vectors. 

Since recursive distributed representations form a bridge from structured representations 
to n-dimensional vectors. they will allow high-level AI tasks to be accomplished with 
neural networks. 

ASSOCIATIVE INFERENCE 

There are many kinds of inferences which seem to be very easy for humans to perform. 
In fact, we must perform incredibly long chains of inferences in the act of understanding 
natural language (Birnbaum. 1986). 

And yet, when we consider performing those inferences using standard techniques which 
involve variable binding and unification, the costs seem prohibitive. For humans. how­
ever. these inferences seem to cost no more than simple associative priming (Meyer & 
Schvaneveldt. 1971). 

Since RAAMS can devise representations of trees as analog patterns which can actually 
be associated, they may lead to very fast neuro-Iogical inference engines. 

For example. in a larger experiment. which was reported in (Pollack. 1988b). a 48-16-48 
RAAM developed representations for a set of ternary trees. such as 

(THOUGHT PAT (KNEW JOHN (LOVED MARY JOHN») 

which corresponded to a set of sentences with complex constituent structure. This 
RAAM was able to represent. as points within a 16-dimensional hypercube. all cases of 
(LOVED X Y) where X and Y were chosen from the set {JOHN, MARY. PAT. MAN}. 

A simple test of whether or not associative inference were possible. then, would be to 
build a "symmetric love" network, which would perform the simple inference: "If 
(LOVED X Y) then (LOVED Y X)". 

A netwoIk with 16 input and output units and 8 hidden units was successfully trained on 
12 of the 16 possible associations. and worked perfectly on the remaining 4. (Note that it 
accomplished this task without any explicit machinery for matching and moving X and 
Y.) 
One might think. that in order to chain simple inferences like this one we will need many 
hidden layers. But there has recently been some coincidental work showing that feed-

3 The wrong distinction is the inverse of the undifferentiated concept problem in science, such as the fusing of 
the notions of heat and temperature in the 17th century (Wiser & Carey. 1983). For example. a company which 
manufactured workstations based on a hardware distinction between characters and graphics had deep trouble 
when trying to build a modem window system ... 



Implications of Recursive Distributed Representations 531 

forward networks with two layers of hidden units can compute arbitrary mappings 
(Lapedes & Farber. 1988a; Lippman. 1987). Therefore, we can assume that the sequen­
tial application of associative-style inferences can be speeded up, at least by retraining. to 
a simple 3-cycle process. 

OPENING THE DOOR TO CHAOS 

The Capacity of RAAM's 

As discussed in the introduction. the question of infinite generative capacity is central. 10 
the domain of RAAM's the question becomes: Given a finite set of trees to represent. 
how can the system then represent an infinite number of related trees. 
For the syntactic-tree experiment reported above. the 20-10-20 RAAM was ooly able to 
represent 32 new trees. The 48-16-48 RAAM was able to represent many more than it 
was trained on. but not yet an infinite number in the linguistics sense. 
I do not yet have any closed analytical forms for the capacity of a recursive auto­
associative memory. Given that is is not really a file-cabinet or content-addressable 
memory, but a memory for a gestalt of rules for recursive pattern compression and recon­
struction. capacity results such as those of (Willshaw. 1981) and (Hopfield, 1982) do not 
directly apply. Binary patterns are not being stored. so one cannot simply count how 
many. 
I have considered. however. the capacity of such a memory in the limit, where the actual 
functions and analog representations are not bounded by single linear transformations 
and sigmoids or by 32-bit floating point resolution. 

Figure 2. 
A plot of the bit-interspersal function. The x and y axis represent the left and 
right subtrees. and the height represents the output of the function. 

Consider just a 2-1-2 recursive auto-associator. It is really a reconstructible mapping 
from points in the unit square to points on the unit line. 10 order to work. the function 
should define a parametric I-dimensional curve in 2-space. perhaps a set of connected 
splines.4 As more and more data points need to be encoded. this parametric curve will 
become more convoluted to cover them. In the limit, it will no longer be a I-dimensional 
curve. but a space-filling curve with a fractional dimension. 

4 (Saund, 1987) originally made the connection between auto-association and dimensionality reduction. If such 












