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We describe pulse - stream firing integrated circuits that imple­
ment asynchronous analog neural networks. Synaptic weights are 
stored dynamically, and weighting uses time-division of the 
neural pulses from a signalling neuron to a receiving neuron. 
MOS transistors in their "ON" state act as variable resistors to 
control a capacitive discharge, and time-division is thus achieved 
by a small synapse circuit cell. The VLSI chip set design uses 
2.5J.1.m CMOS technology. 

INTRODUCTION 

Neural network implementations fall into two broad classes - digital [1,2] 
and analog (e.g. [3,4]). The strengths of a digital approach include the 
ability to use well-proven design techniques, high noise immunity, and the 
ability to implement programmable networks. However digital circuits are 
synchronous, while biological neural networks are asynchronous. Further­
more, digital multipliers occupy large areas of silicon. Analog networks 
offer asynchronous behaviour, smooth neural activation and (potentially) 
small circuit elements. On the debit side, however, noise immunity is low, 
arbitrary high precision is not possible; and no reliable "mainstream" analog 
nonvolatile memory technology exists. 

Many analog VLSI implementations are nonprogrammable, and therefore 
have fixed functionality. For instance, subthreshold MOS devices have been 
used to mimic the nonlinearities of neural behaviour, in implementing Hop­
field style nets [3] , associative memory [5] , visual processing functions [6] , 
and auditory processing [7]. Electron-beam programmable resistive inter­
connects have been used to represent synaptic weights between more con­
ventional operational-amplifier neurons [8,4]. 

We describe programmable analog pulse-firillg neural networks that use 00-

chip dynamic analog storage capacitors to store synaptic weights, currently 
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refreshed from an external RAM via a Digital -Analog converter. 

PULSE-FIRING NEURAL NETWORKS 

A pulse-firing neuron, i is a circuit which signals its state, V. by generating 
a stream of 0-5V pulses on its output. The pulse rate R.' varies from 0 
when neuron i is OFF to R.(max) when neuron i is fully ION. Switching 
between the OFF and ON stAtes is a smooth transition in output pulse rate 
between these lower and upper limits. In a previous system, outlined below, 
the synapse allows a proportion of complete presynaptic neural pulses V. to 
be added (electrically OR-ed) to its output. A synaptic "gating" function, 
determined by T .. , allowed bursts of complete pulses through the synapse. 
Moving down a'l column of synapses, therefore, we see an ever more 
crowded asynchronous mass of pulses, representing the aggregated activity 
of the receiving neuron. In the system that forms the substance of this 
paper, a proportion (determined by T .. ) of each presynaptic pulse is passed 
to the postsynaptic summation. l] 
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Figure 1. Neuron Circuit 

NEURON CIRCUIT 

Figure 1 shows a CMOS implementation of the pulse-firing neuron function 
in a system where excitatory and inhibitory pulses are accumulated on 
separate channels. The output stage of the neuron consists of a "ring oscilla­
tor" - a feedback circuit containing an odd number of logic inversions, with 
the loop broken by a NAND gate, controlled by a smoothly varying voltage 
representing the neuron's total activity, 

j=" -1 

Xj = L TjjV, 
j=O 
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This activity is increased or decreased by the dumping or removal of charge 
packets from the "integrator" circuit. The arrival of an excitatory pulse 
dumps charge, while an inhibitory pulse removes it. Figure 2 shows a device 
level (SPICE) simulation of the neuron circuit. A strong excitatory input 
causes the neural potential to rise in steps and the neuron turns ON. Subse­
quent inhibitory pulses remove charge packets from the integrating capacitor 
at a higher rate, driving the neuron potential down and switching the neu­
ron OFF. 
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Figure 2. SPICE Simulation of Neuron 

SYNAPSE CIRCUIT - USING CHOPPING CLOCKS 

In an earlier implementation, "chopping clocks" were introduced - synchro­
nous to one another, but asynchronous to the neural firing. One bit of the 
(digitally stored) weight T .. indicates its sign, and each other bit of precision 
is represented by a chopping clock. The clocks are non-overlapping, the 
MSB clock is high for lh of the time, the next for % of the time, etc. These 
clocks are used to gate bursts of pulses such that a fraction T .. of the pulses 
are passed from the input of the synapse to either the excita¥ory or inhibi­
tory output channel. 
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CHOPPING CLOCK SYSTEM - PROBLEMS 

A custom VLSI synaptic array has been constructed [9] with the neural 
function realised in discrete SSI to allow flexibility in the choice of time con­
stants. The technique has proven successful, but suffers from a number of 
problems:-

- Digital gating ("using chopping clocks") is clumsy 
- Excitation and Inhibition on separate lines - bulky 
- Synapse complicated and of large area 
- < 100 synapses per chip 
- < 10 neurons per chip 

In order to overcome these problems we have devised an alternative arith­
metic technique that modulates individual pulse widths and uses analog 
dynamic weight storage. This results in a much smaller synapse. 
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Figure 3. Pulse Multiplication 
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SYNAPSE CIRCUIT - PULSE MULTIPLICATION 

The principle of operation of the new synapse is illustrated in Figure 3. 
Each presynaptic pulse of width W is modulated by the synaptic weight T .. 
such that the resulting postsynaptic pulse width is lJ 

W.Tij 

This is achieved by using an analog voltage to modulate a capacitive 
discharge as illustrated in Figure 4. The presynaptic pulse enters a CMOS 
inverter whose positive supply voltage (V dd) is controlled by T ... The capa­
citor is nominally charged to Vdd, but begins to discharge at a gonstant rate 
when the input pulse arrives. When the voltage on the capacitor falls below 
the threshold of the following inverter, the synapse output goes high. At the 
end of the presynaptic pulse the capacitor recharges rapidly and the synapse 
output goes low, having output a pulse of length W.T ". The circuit is now 

lJ 
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ready for the next presynaptic pulse. This mechanism gives a linear rela­
tionship between multiplier Wand inverter supply voltage, Vdd. 
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Figure 4. Improved Synapse Circuit 

FULL SYNAPSE 

Synaptic weight storage is achieved using dynamic analog storage capacitors 
refreshed from off-chip RAM via a Digital-Analog converter. A CMOS 
active-resistor inverter is used as a buffer to isolate the storage capacitor 
from the multiplier circuit as shown in the circuit diagram of a full synapse 
in Figure 5. 
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Figure s. Full Synapse Circuit 

A capacitor distributed over a column of synaptic outputs stores neural 
activity, x., as an analog voltage. The range over which the synapse voltage 
- pulse tithe multiplier relationship is linear is shown in Figure 6. This wide 



676 Hamilton, Murray and Tarassenko 

(:=c2V) range may be used to implement inhibition and excitation in a single 
synapse, by "splitting" the range such that the lower volt (l-2V) represents 
inhibition, and the upper volt (2-3V) excitation. Each presynaptic pulse 
removes a packet of charge from the activity capacitor while each postsynap­
tic pulse adds charge at twice the rate. In this way, a synaptic weight voltage 
of 2V, giving a pulse length multiplier of lh, gives no net change in neuron 
activity x .. The synaptic weight voltage range 1-2V therefore gives a net 
reduction'in neuron activity and is used to represent inhibition, the range 
2-3V gives a net increase in neuron activity and is used to represent excita­
tion. 1.0 

0.6 -

o . 4 - ---- -- ------- ---------- - --

0.2 

o . -,' .' 
. . . . 

--------- -- --

o 123 4 
Synapse Voltage Tij (V) 

Figure 6. Multiplier Linearity 
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The resulting synapse circuit implements excitation and inhibition in 11 
transistors per synapse. It is estimated that this technique will yield more 
than 100 fu.ly programmable neurons per chip. 

FURTHER WORK 

There is still much work to be done to refine the circuit of Figure 5 to 
optimise (for instance) the mark-space ratio of the pulse firing and the effect 
of pulse overlap, and to minimise the power consumption. This will involve 
the creation of a custom pulse-stream simulator, implemented directly as 
code, to allow these parameters to be studied in detail in a way that probing 
an actual chip does not allow. Finally, as Hebbian-(and modified Hebbian 
- for instance [10]) learning schemes only require a synapse to "know" the 
presynaptic and postsynaptic states, we are able to implement it on-chip at 
little cost, as the chip topology makes both of these signals available avail­
able to the synapse locally. This work introduces as many exciting possibili­
ties for truly autonomous systems as it does potential problems! 




