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ABSTRACT 

The olfactory bulb of mammals aids in the discrimination of 
odors. A mathematical model based on the bulbar anatomy and 
electrophysiology is described. Simulations produce a 35-60 Hz 
modulated activity coherent across the bulb, mimicing the observed 
field potentials. The decision states (for the odor information) 
here can be thought of as stable cycles, rather than point stable 
states typical of simpler neuro-computing models. Analysis and 
simulations show that a group of coupled non-linear oscillators are 
responsible for the oscillatory activities determined by the odor in­
put, and that the bulb, with appropriate inputs from higher centers, 
can enhance or suppress the sensitivity to partiCUlar odors. The 
model provides a framework in which to understand the transform 
between odor input and the bulbar output to olfactory cortex. 

1. INTRODUCTION 

The olfactory system has a simple cortical intrinsic structure (Shepherd 1979), 
and thus is an ideal candidate to yield insight on the principles of sensory informa­
tion processing. It includes the receptor cells, the olfactory bulb, and the olfactory 
cortex receiving inputs from the bulb (Figure [1]). Both the bulb and the cortex 
exhibit similar 35-90 Hz rhythmic population activity modulated by breathing. Ef­
forts have been made to model the bulbar information processing function (Freeman 
1979b, 1979c; Freeman and Schneider 1982; Freeman and Skarda 1985; Baird 1986j 
Skarda and Freeman 1987), which is still unclear (Scott 1986). The bulbar position 
in the olfactory pathway, and the linkage of the oscillatory activity with the sniff 
cycles suggest that the bulb and the oscillation play important roles in the olfactory 
information processing. We will examine how the bulbar oscillation pattern, which 
can be thought of as the decision state about odor information, originates and how 
it depends on the input odor. We then show that with appropriate inputs from the 
higher centers, the bulb can suppress or enhance the its sensitivity to particular 
odors. Much more details of our work are described in other two papers (Li and 
Hopfield 1988a, 1988b). 
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The olfactory bulb has mainly the excitatory mitral and the inhibitory granule 
cells located on different parallel lamina. Odor receptors effectively synapse on the 
mitral cells which interact locally with the granule cells and carry the bulbar outputs 
(Fig 1, Shepherd 1979). A rabbit has about 50,000 mitral, and "'-J 10,000,000 granule 
cells (Shepherd 1979). With short odor pulses, the receptor firing rate increases in 
time, and terminates quickly after the odor pulse terminates (Getchell and Shepherd 
1978). Most inputs from higher brain centers are directed to the granule cells, and 
little is know about them. The surface EEG wave (generated by granule activities, 
Freeman 1978j Freeman and Schneider 1982), depending on odor stimulations and 
animal motivation, shows a high amplitude oscillation arising during the inhalation 
and stopping early in the exhalation. The oscillation is an intrinsic property of the 
bulb itself, and is influenced by central inputs (Freeman 1979aj Freeman and Skarda 
1985). It has a peak frequency (which is the same across the bulb) in the range of 
35-90 Hz, and rides on a slow background wave phase locked with the respiratory 
wave. 

2. MODEL ORGANIZATION 
For simplicity, we only include ( N excitatory) mitral and ( M inhibitory ) 

granule cells in the model. The Receptor input I is Ii = Iodor" + Ibaekgrotmd,i, 
for 1 ... , N, a superposition of an odor signal Iodor and a background input 
Ibaekgrov,nd. Iodor > 0 increases in time during inhalation, and return expo­
nentially during exhalation toward the ambient. The central input to the granule 
cells is vector Ie with components Ie,j for 1 < j < M. For now, it is assumed that 
Ie = 0.1 and Ibaekgrov,nd = 0.243 do not change during a sniff (Li and Hopfield 
1988a). 

Each cell is one unit with its internal state level described by a single vari­
able, and its output a continuous function of the internal state level. The inter­
nal states and outputs are respectively X = {Xl' X2, ... , X N} and G z ( X) = 
{gz(xd, gz(x2),·.· ,gz(XN)} (Y = {YI' Y2,··· ,YM} and Gy{Y) = {gy(Yd, 
gy(Y2), ... ,gy(YM)}) for the mitral (granule) cells, where gz > 0 and gy > 0 are 
the neurons' non-linear sigmoid output functions essential for the bulbar oscillation 
dynamics (Freeman and Skarda 1985) to be studied. 
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Fig.l. Left: olfactory system; Right: bulbar structure 
Cells marked "+" are mitral cells, "_" are granule cells 

The geometry of bulbar structure is simplified to a one dimensional ring. Each 
cell is specified by an index, e.g. ith mitral cell, and jth granule cell for all i, i 
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indicating cell locations on the ring (Fig 1). N X M matrix Ho and M X N 
matrix Wo are used respectively to describe the synaptic strengths (postsynaptic 
input: presynaptic output) from granule cells to mitral cells and vice versa. The 
bulb model system has equations of motion: 

X = -HoGy(Y) - O:zX + I, 

Y = WoGz(X) - O:yY + Ie. 
(2.1) 

where O:z = 1/'rz , O:y = 1/'ry, and 'rz = 'ry = 7 msec are the time constants 
of the mitral and granule cells respectively (Freeman and Skarda 1985; Shepherd 
1988). In simulation, weak random noise is added to I .and Ie to simulate the 
fluctuations in the system. 

3. SIMULATION RESULT 
Computer simulation was done with 10 mitral and granule cells, and show 

that the model can capture the major effects of the real bulb. The rise and fall 
of oscillations with input and the baseline shift wave phase locked with sniff cycles 
are obvious (Fig.2). The simulated EEG (calculated using the approximation by 
Freeman (1980)) and the measured EEG are shown for comparison. During a sniff, 
all the cells oscillate coherently with the same frequency as physiologically observed. 
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Fig.2. A: Simulation result; B: measured result from Freeman and Schneider 1982. 

The model also shows the capability of a pattern classifier. During a sniff, 
some input patterns induce oscillation, while others do not, and different inputs 
induce different oscillation patterns. We showed (Li and Hopfield 1988a) that the 
bulb amplifies the differences between the different inputs to give different output 
patterns, while the responses to same odor inputs with different noise samples differ 
negligibly. 

4. MATHEMATICAL ANALYSIS 
A (damped) oscillator with frequency w can be described by the equations 

X = -wy - o:x 
iI = wx - o:y 

or (4.1) 
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The solution orbit in (x, y) space is a circle if a = 0 (non-damped oscillator), 
and spirals into the origin otherwise (damped oscillator). IT a mitral cell and a 
granule cell are connected to each other, with inputs i(t) and ie(t) respectively, 
then 

x = -h . gy(y) - azx + i(t), 

y = w . gz(x) - ayy + ie(t). 
(4.2) 

This is the scalar version of equation (2.1) with each upper case letter representing 
a vector or matrix replaced by a lower case letter representing a scalar. It is as­
sumed that i(t) has a much slower time course than X or y (frequency of sniffs ~ 
characteristic neural oscillation frequency). Use the adiabatic approximation, and 
define the equilibrium point (xo, Yo) as 

Xo ~ 0 = -h . gy(yo) - azxo + i, 
Yo ~ 0 = w . gz(xo) - ayyo + ie' 

Define x' = x - Xo, y' - y - Yo' Then 

x' = -h(gy(y) - gy(yo)) - azx', 

il = w(gz(x) - gz(xo)) - ayy'. 

(cf. equation (4.1)). IT a z = ay = 0, then the solution orbit 

zo+z' yo+Y' 

(4.3) 

R = f w(gz(s) - gz(xo))ds + f h(gy(s) - gy(Yo))ds = constant 
Zo Yo 

is a closed curve in the original (x, y) space surrounding the point (xo, Yo), i.e., 
(x, y) oscillates around the point (xo, Yo). When the dissipation is included, 
dR/ dt < 0, the orbit in (x, y) space will spiral into the point (xo, Yo). Thus 
a connected pair of mitral and granule cells behaves as a damped non-linear oscilla­
tor, whose oscillation center (xo, Yo) is determined by the external inputs i and ie' 
For small oscillation amplitudes, it can be approximated by a sinusoidal oscillator 
via linearization around the (xo, Yo): 

x = -h . g~(yo)Y - azx 

iI = w . g~(xo)x - a 1l y 
(4.4) 

where (x, y) is the deviation from (xo, Yo . The solution is X = Toe-at sin(wt+<p) 

where a = (az + a y)/2 and w = hwg~(xo)g~(yo) + (az - a y)2/4. IT az = 

a y, which is about right in the bulb, w = Jhwg~(xo)g~(yo). For the bulb, 

a ~ 0.3w. The oscillation frequency depends on the synaptic strengths hand w, 
and is modulated by the receptor and central input via (xo, Yo). 
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N such mitral-granule pairs with cell interconnections between the pairs rep­
resent a group of N coupled non-linear damped oscillators. This is exactly the 
situation in the olfactory bulb. The locality of synaptic connections in the bulb im­
plies that the oscillator coupling is also local. (That there are many more granule 
cells than mitral cells only means that there is more than one granule cell in each 
oscillator.) Corresponding to equation (4.2) and (4.4), we have equation (2.1) and 

. , 
X = -HoGy(Yo)Y - o.zX = -HY - o.zX, 

y = �W�o�G�~�(�X�o�)�X� - ayY = WX - o.yY. 
(4.5) 

where (X, Y) are now deviations from (Xo, Yo) and �G�~�(�X�o�)� and �G�~�(�Y�o�)� are 

diagonal matrices with elements: �[�G�~�(�X�o�)�l�i�i� = �g�~�(�X�i�,�o�)� > 0, �[�G�~�(�Y�o�)�l�i�i� = 

�g�~�(�Y�i�l�o�)� > 0, for all i,j. Eliminating Y, 

(4.6) 

where A = HW = �H�o�G�~�(�Y�o�)�W�o�G�~�(�X�o�)�.� The ith oscillator (mitral cell) follows 
the equation 

Xi + (o.z + o.y)Xi + (Aii + o.zo.y)Xi + L AijXj = 0 (4.7) 
jt.i 

(cf.equation (4.1)), the the last term describes the coupling between oscillators. 
Non-linear effect occurs when the amplitude is large, and make the oscillation wave 
form non-sinusoidal. 

If X k is one of the eigenvectors of A with eigenvalue Ak, equation (4.6) has 
kth oscillation mode 

Components of Xk indicate oscillators' relative amplitudes and phases (for each 
k = 1,2, ... , N independent mode). For simplicity, we set 0.2: = 0.1/ = 0., 

then X ex: Xke-at±i../X,.t. Each mode has frequency �R�e�~�k�'� where Re means 

the real part of a complex number. If Re( -0. ± �i�~�k�)� > 0 is satisfied for 
some k, then the amplitude of the kth mode will increase with time, i.e. growing 
oscillation. Starting from an initial condition of arbitrary small amplitudes in linear 
analysis, the mode with the fastest growing amplitude will dominate the output, 
and the whole bulb will oscillate in the same frequency as observed physiologically 
(Freeman 1978; Freeman and Schneider 1982) as well as in the simulation. With the 
non-linear effect, the strongest mode will suppress the others, and the final activity 
output will be a single "mode" in a non-linear regime. 








