
632

STATIC AND DYNAMIC ERROR PROPAGATION
NETWORKS WITH APPLICATION TO SPEECH

CODING

A J Robinson, F Fallside
Cambridge University Engineering Department

Trumpington Street, Cambridge, England

Abstract

Error propagation nets have been shown to be able to learn a variety of tasks in
which a static input pattern is mapped outo a static output pattern. This paper
presents a generalisation of these nets to deal with time varying, or dynamic
patterns, and three possible architectures are explored. As an example, dynamic
nets are applied to tbe problem of speech coding, in which a time sequence of
speech data are coded by one net and decoded by another. The use of dynamic
nets gives a better signal to noise ratio than that achieved using static nets.

1. INTRODUCTION

This paper is based upon the use of the error propagation algorithm of Rumelbart, Hinton
and Williams l to train a connectionist net. The net is defined as a set of units, each witb an
activation, and weights between units which determine the activations. The algorithm uses a
gradient descent technique to calculate the direction by which each weight should be changed
in order to minimise the summed squared difference between the desired output and the actual
output. Using this algorithm it is believed that a net can be trained to make an arbitrary
non-linear mapping of the input units onto the output units if given enough intermediate
units. This 'static' net can be used as part of a larger system with more complex behaviour.

The static net has no memory for past inputs, but many problems require the context of
the input in order to c.ompute the answer. An extension to the static net is developed, the
'dynamic' net, which feeds back a section of the output to the input, so creating some internal
storage for context, and allowing a far greater class of problems to be learned. Previously this
method of training time dependence into uets has suffered from a computational requirement
which increases linearly with the time span of the desired context. The three architectures
for dynamic uets presented here overcome this difficulty.

To illustrate the power of these networks a general coder is developed and applied to the
problem of speech coding. The non-liuear solution found by training a dynamic net coder is
compared with an established linear solution, and found to have an increased performance as
measured by the signal to noise ratio .

2. STATIC ERROR PROPAGATION NETS

A static Ret is defined by a set of units and links between the units. Denoting 0i as the value
of the ith unit, and wi,l as the weight of the link between Oi and OJ, we may divide up the
units into input units, hidden units and output units. If we assign 00 to a. constant to form a

@ American Institute of Physics 1988

633

bias, the input units run from 01 up to on",\., followed by the hidden units to onh • .t and then
the output units to On.".' The values of the input units are defined by the problem and the
values of the remaining units are defined by:

i-I

neti ~1LJ' '0' ',1 J (2.1)
j=O

°i !(net;) (2.2)

where !(x) is any continuous monotonic non-linear function and is known as the activation
function. The function used the application is:

!(x)
2

----1
1 + e- z",

(2 .3)

These equations define a net which has the maximum number of interconnections. This
arrangement is commonly restricted to a layered structure in which units are only connected
to the immediately preceding layer . The architecture of these nets is specified by the number
of input, output and hidden units. Diagrammatically the static net is transformation of an
input 'U, onto the output y, as in figure 1.

static

net

figure 1

The net is trained by using a gradient descent algorithm which mlDlsmises an energy
term, E, defined as the summed squared error between the actual outputs, ai, and the target
outputs, t i . The algorithm also defines an error signal, Oi, for each unit:

1 "lint

E ~ (ti -- od 2 (2.4)
2

i=nlw l+1

[Ii !' (netd(t i - 0;) nhid < i ::; nout (2.5)
" lint

.f' (net;) ~ OiWj,i ninp < i ::; nhid (2 .6)
j=i+l

where f' (x) is the derivative of !(x). The error signal and the adivations of the units define
the change in each weight, D. Wi,j'

(2.7)

where '1 is a constant of proportionality which determines the learning rate. The above
equations define the error signal, 0;, for the input units as well as for the hidden units. Thus
any number of static nets can be connected together, the values of Oi being passed from input
units of one net to output units of the preceding net. It is this ability of error propagation
nets to be 'glued' together in this way that enables the construction of dynamic nets.

3. DYNAMIC ERROR PROPAGATION NETS

The essential quality of the dynamic net is is that its behaviour is determined both by the
external input to the net, and also by its own internal state. This state is represented by the

634

activation of a group of units. These units form part of the output of a st.atic net and also
part of the input to another copy of the same static net in the next time period. Thus the
state units link multiple copies of static nets over time to form a dynamk net .

3.1. DEVELOPMENT FROM LINEAR CONTROL THEORY

The analogy of a dynamic net in linear systems2 may be stated as:

(3.1.1)

(3.1.2)

where up is the input vector, zp the state vector, and Yp the output vector at the integer time
p. A, Band C are matrices.

The structure of the linear systems solution may be implemented as a non-linear dynamic
net by substituting the matrices A, Band C by statk nets, represented by the non-linear
functions A[.]' B[.] and C[.]. The summation operation of Azp and Bup could be achieved
using a net with one node for each element in z and u and with unity weights from the two
inputs to the identity activation function f(x) = z. Alternatively this net can be incorporated
into the A[.] net giving the architecture of figure 2.

B [.] y(p+l)

dynamic t---of
A[.] e[.] y(p+l)

net

x(p+l)

Time Time

Delay Delay

figure 2 figure 3

The three networks may be combined into one, as in figure 3. Simplicity of architecture
is not just an aesthetic consideration. If three nets are used then each one must have enough
computational power for its part of the task, combining the nets means that only the combined
power must be sufficient and it allows common computations can be shared.

The error signal for thf' output Yp+l, can be calculated by comparison with the desired
output. However, the error signal for thf' state units, x P ' is only given by the net at time p+l,
which is not known at time p. Thus it is impossible to use a single backward pass to train
this net . It is this difficulty which introduces the variation in the architectures of dynamic
nets.

3.2. THE FINITE INPUT DURATION (FID) DYNAMIC NET

If the output of a dynamic net, YP' is df'pendf'nt on a finite number of previous inputs, up_p

to up, or if this assumption is a good approximation, then it is possible to formulate the

635

learning algorithm by expansion of the dynamk net for a finite time, as in figure 4. This
formulation is simlar to a restricted version of the recurrent net of Rumelhart, Hinton and
Williams. 1

dynamic
net

(p-2)

dynamic
net

(p-l)

figure 4

yep)

dynamic
net

(p)

x(p+l)

y(p+l)

Consider only the component of the error signal in past instantiations of the nets which
is the result of the error signal at time t. The errot signal for YP is calculated from the target
output and the ('rror signal for xr is zero. This combined error signal is propagated back
though the dynamic net at p to yield the error signals for up and xp' Similarly these error
signals can then be propagated back through the net at t - P, and so on for all relevant inputs.
The summed error signal is then used to change the weights as for a static net.

Formalising the FID dynamic net for a general time q, q ~ p:

n,

°q,i

tq,i

6'1,'
Wi,j

~Wq,i,i
~wi,i

is the number of state units
is the output value of unit i at time q
is the target value of unit i at time q
is the error value of unit i at time q

is the weight between 0; and OJ

is the weight change for this iteration at time q
is the total weight change for this iteration

These values are calculated in the same way as in a static net,

netq,i
i-1

L Wi,jOq,j

j=O

f(net q,.)

f' (netq,d(tq,i - 0'1,;)

nullt

!'(n('t q ,;) L 6q,jWj,i

j-=i+l

nhid + n, < i :S nout

nhid < i :S nhid + n,

(3.2.1)

(3 .2.2)

(3 .2.3)

(3.2.4)

(3 .2.5)

(3.2.6)

and the total weight change is given by the summation of the partial weight changes for all

636

previous times.

p

L Llu'q,i,j

q=p-P
p

L 7]6q,iOq,j

q=p-P

(3.2.7)

(3.2.8)

Thus, it is possible to train a dynamic net to incorporate the information from any time
period of finite length, and so l~arn any function which has a finite impulse response.·

In some situations the approximation to a finite length may not be valid, or the storage
and computational requirements of such a net may not be feasible. In such situations another
approach is possible, the infinite input duration dynamic net .

3.3. THE INFINITE INPUT DURATION (lID) DYNAMIC NET

Although the forward pass of the FID net of the previous section is a non-linear process, th ..
backward pass computes the efred of small variations on the forward pass, and is a linear
process. Thus the recursive learning procedure described in the previous section may be
compressed into a single operation.

Given the target values for the output of the net at time p, equations (3.2.3) and (3.2.4)
define valu~s of 6p,i at the outputs. If we denote this set of 6p,i by Dp then equation (3.2.5)
states that any 6p ,i in the net at time p is simply a linear transformation o(Dp. Writing the
transformation matrix as S:

(3.3.1)

In particular the set of 6p ,i which is to be fed back into the network at time p - 1 is also
a linear transformation of Dp

(3.3.2)

or for an arbitrary time q:

(3.3.3)

so substituting equations (3.3.1) and (3.3.3) into equation (3.2.8):

p

(IT T,) D,o"j LlU'i,j 7]L Sq,i (3.3.4)
q=-oo 7=q+l

7]Mp,i,i Dp (3.3.5)

where:

p

(IT T}"j M . , L Sq,i (3.3.6) p,',)
q=-oo "=q+l

• This is a restriction on the class of functions which can be learned, the output will always be affected
in some way by all previous inputs giving an infinite impulse response performance.

637

and note that Mp,i,i can be written in terms of Mp-1,i,i :

Sp,i (IT T,.) 0p,i + (I: Sq,i
,.=p+l q=-oo

(3.3.7) M .,
P,- ,J

Sp,iop,i + Mp-1,i,iTp (3.3 .8)

Hence we can calculate the weight changes for an infinite recursion using only the finite
matrix M,

3.3. THE STATE COMPRESSION DYNAMIC NET

The previous architectures for dynamic nets rely on the propagation of the error signal hack
ill time to define the format of the information in the state units. All alternative approach
is to use another error propagation net to define the format of the state units. The overall
architecture is given in figure 5.

1-----\1 Tranlllatort---""'"
Bncoder x(p+1)

net

Decoder
net

figure 5

y(p+1)
net

The encoder net is trained to code the current input and current state onto the next state,
while the decoder net is trained to do the reverse operation. The tran81ator net code8 the
next state onto the desired output. This encoding/decoding attempts to represent the current
input and the current state in the next state, and by the recursion, it will try to represent all
previous inputs. Feeding errors back from the translator directs this coding of past inputs to
those which are useful in forming the output.

3.4. COMPARISON OF DYNAMIC NET ARCHITECTURES

III comparing the three architectures for dynamic nets, it is important to consider the compu­
tational and memory requirements, and how these requirements scale with increasing context.

To train an FID net the net must store the past activations of the all the units within
the time span of thel'necessary context, Using this minimal storage, the computational load
scales proportiona.lly to the time span considered, as for every new input/output pair the
net must propagate an error signal back though all the past nets. However, if more sets
of past activations are stored in a buffer, then it is possible to wait until this buffer is full
before computing the weight changes. As the buffer size increases the computational load in

638

calculating the weight changes tends to that of a single backward pass through the units, and
so becomes independent of the amount of coutext.

The largest matrix required to compute the 110 net is M, which requires a factor of the
number of outputs of the net more storage than the weight matrix. This must be updated
on each iteration, a computational requirement larger than that of the FlO net for smaJl
problems3 . However, if this architecture were implemented on a paraJlel machine it would be
possible to store the matrix M in a distributed form over the processors, and locally calculate
the weight changes. Thus, whilst the FID net requires the error signal to be propagated back
in time in a strictly sequential manner, the 110 net may be implemented in paraJld, with
possible advantages on parallel machines.

The state compression net has memory and computational requirements independent of
the amount of context. This is achieved at the expense of storing recent information in the
state units whether it is required to compute the output or not. This results in an increased
computational and memory load over the more efficient FID net when implemented with a
buffer for past outputs. However, the exclusion of external storage during training gives this
architecture more biological plausibili ty, constrained of course by the plausibility of the error
propagation algorithm itself.

With these considerations in mind, the FlO net was chosen to investigate a 'real world'
problem, that of the coding of the speech waveform.

4. APPLICATION TO SPEECH CODING

The problem of speech coding is one of finding a suitable model to remove redundancy and
hence reduce the data rate of the speech. The Boltzmann machine learning algorithm has
already been extended to deal to the dynamic case and applied to speech recognition4. How­
ever, previous use of error propagation nets for speech processing has mainly been restricted to
explicit presentation of the context 5,6 or explicit feeding back the output units to the input 7,8,

with some work done in usillg units with feedback links to themselves9 . In a similar area,
static error propagation nets have been used to perform image coding as well as cOllventional
techniques1o.

4.1. THE ARCHITECTURE OF A GENERAL CODER

The coding principle used in this section is not restricted to c.oding speech data. The general
problem is one of encoding the present input using past input context to form the transmitted
signal, and decoding this signal using the context ofthe coded signals to regenerate the original
input. Previous sections have shown that dynamic nets are able to represent context, so two
dynamic, nets in series form the architecture of the coder, as in figure 6.

This architecture may be specified by the number of input, state, hidden and transmission
units. There are as many output units as input units and, in this application, both the
transmitter and receiver have the same number of state and hidden units.

The input is combined with the internal state of the transmitter to form the coded signal,
and then decoded by the receiver using its internal state. Training of the net involves the
comparison of the input and output to form the error signal, which is thell propagated back
through past instantiations of the receiver and transmitter in the same way as a for a FID
dynamic net.

It is useful to introduce noise into the coded signal during the training to reduce the
information capacity of the transmission line. This forces the dynamic 11ets to incorporate
time information, without this constraint both nets can learn a simple transformation without
any time dependence. The noise can be used to simulate quantisation of the coded signal so

