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Abstract 

Error propagation nets have been shown to be able to learn a variety of tasks in 
which a static input pattern is mapped outo a static output pattern. This paper 
presents a generalisation of these nets to deal with time varying, or dynamic 
patterns, and three possible architectures are explored. As an example, dynamic 
nets are applied to tbe problem of speech coding, in which a time sequence of 
speech data are coded by one net and decoded by another. The use of dynamic 
nets gives a better signal to noise ratio than that achieved using static nets. 

1. INTRODUCTION 

This paper is based upon the use of the error propagation algorithm of Rumelbart, Hinton 
and Williams l to train a connectionist net. The net is defined as a set of units, each witb an 
activation, and weights between units which determine the activations. The algorithm uses a 
gradient descent technique to calculate the direction by which each weight should be changed 
in order to minimise the summed squared difference between the desired output and the actual 
output. Using this algorithm it is believed that a net can be trained to make an arbitrary 
non-linear mapping of the input units onto the output units if given enough intermediate 
units. This 'static' net can be used as part of a larger system with more complex behaviour. 

The static net has no memory for past inputs, but many problems require the context of 
the input in order to c.ompute the answer. An extension to the static net is developed, the 
'dynamic' net, which feeds back a section of the output to the input, so creating some internal 
storage for context, and allowing a far greater class of problems to be learned. Previously this 
method of training time dependence into uets has suffered from a computational requirement 
which increases linearly with the time span of the desired context. The three architectures 
for dynamic uets presented here overcome this difficulty. 

To illustrate the power of these networks a general coder is developed and applied to the 
problem of speech coding. The non-liuear solution found by training a dynamic net coder is 
compared with an established linear solution, and found to have an increased performance as 
measured by the signal to noise ratio . 

2. STATIC ERROR PROPAGATION NETS 

A static Ret is defined by a set of units and links between the units. Denoting 0i as the value 
of the ith unit, and wi,l as the weight of the link between Oi and OJ, we may divide up the 
units into input units, hidden units and output units. If we assign 00 to a. constant to form a 
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bias, the input units run from 01 up to on",\., followed by the hidden units to onh • .t and then 
the output units to On.".' The values of the input units are defined by the problem and the 
values of the remaining units are defined by: 

i-I 

neti ~1LJ' '0' ',1 J (2.1) 
j=O 

°i !(net;) (2.2) 

where !( x) is any continuous monotonic non-linear function and is known as the activation 
function. The function used the application is: 

!(x) 
2 

----1 
1 + e- z", 

(2 .3) 

These equations define a net which has the maximum number of interconnections. This 
arrangement is commonly restricted to a layered structure in which units are only connected 
to the immediately preceding layer . The architecture of these nets is specified by the number 
of input, output and hidden units. Diagrammatically the static net is transformation of an 
input 'U, onto the output y, as in figure 1. 

static 

net 

figure 1 

The net is trained by using a gradient descent algorithm which mlDlsmises an energy 
term, E, defined as the summed squared error between the actual outputs, ai, and the target 
outputs, t i . The algorithm also defines an error signal, Oi, for each unit: 

1 "lint 

E ~ (ti -- od 2 (2.4) 
2 

i=nlw l+1 

[Ii !' (netd(t i - 0;) nhid < i ::; nout (2.5 ) 
" lint 

.f' (net;) ~ OiWj,i ninp < i ::; nhid (2 .6) 
j=i+l 

where f' (x) is the derivative of !( x). The error signal and the adivations of the units define 
the change in each weight, D. Wi,j' 

(2.7) 

where '1 is a constant of proportionality which determines the learning rate. The above 
equations define the error signal, 0;, for the input units as well as for the hidden units. Thus 
any number of static nets can be connected together, the values of Oi being passed from input 
units of one net to output units of the preceding net. It is this ability of error propagation 
nets to be 'glued' together in this way that enables the construction of dynamic nets. 

3. DYNAMIC ERROR PROPAGATION NETS 

The essential quality of the dynamic net is is that its behaviour is determined both by the 
external input to the net, and also by its own internal state. This state is represented by the 
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activation of a group of units. These units form part of the output of a st.atic net and also 
part of the input to another copy of the same static net in the next time period. Thus the 
state units link multiple copies of static nets over time to form a dynamk net . 

3.1. DEVELOPMENT FROM LINEAR CONTROL THEORY 

The analogy of a dynamic net in linear systems2 may be stated as: 

(3.1.1) 

(3.1.2) 

where up is the input vector, zp the state vector, and Yp the output vector at the integer time 
p. A, Band C are matrices. 

The structure of the linear systems solution may be implemented as a non-linear dynamic 
net by substituting the matrices A, Band C by statk nets, represented by the non-linear 
functions A[.]' B[.] and C[.]. The summation operation of Azp and Bup could be achieved 
using a net with one node for each element in z and u and with unity weights from the two 
inputs to the identity activation function f( x) = z. Alternatively this net can be incorporated 
into the A[.] net giving the architecture of figure 2. 

B [.] y(p+l) 

dynamic t---of 
A[.] e[.] y(p+l) 

net 

x(p+l) 

Time Time 

Delay Delay 

figure 2 figure 3 

The three networks may be combined into one, as in figure 3. Simplicity of architecture 
is not just an aesthetic consideration. If three nets are used then each one must have enough 
computational power for its part of the task, combining the nets means that only the combined 
power must be sufficient and it allows common computations can be shared. 

The error signal for thf' output Yp+l, can be calculated by comparison with the desired 
output. However, the error signal for thf' state units, x P ' is only given by the net at time p+l, 
which is not known at time p. Thus it is impossible to use a single backward pass to train 
this net . It is this difficulty which introduces the variation in the architectures of dynamic 
nets. 

3.2. THE FINITE INPUT DURATION (FID) DYNAMIC NET 

If the output of a dynamic net, YP' is df'pendf'nt on a finite number of previous inputs, up_p 

to up, or if this assumption is a good approximation, then it is possible to formulate the 
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learning algorithm by expansion of the dynamk net for a finite time, as in figure 4. This 
formulation is simlar to a restricted version of the recurrent net of Rumelhart, Hinton and 
Williams. 1 

dynamic 
net 

(p-2) 

dynamic 
net 

(p-l) 

figure 4 

yep) 

dynamic 
net 

(p) 

x(p+l) 

y(p+l) 

Consider only the component of the error signal in past instantiations of the nets which 
is the result of the error signal at time t. The errot signal for YP is calculated from the target 
output and the ('rror signal for xr is zero. This combined error signal is propagated back 
though the dynamic net at p to yield the error signals for up and xp' Similarly these error 
signals can then be propagated back through the net at t - P, and so on for all relevant inputs. 
The summed error signal is then used to change the weights as for a static net. 

Formalising the FID dynamic net for a general time q, q ~ p: 

n, 

°q,i 

tq,i 

6'1,' 
Wi,j 

~Wq,i,i 
~wi,i 

is the number of state units 
is the output value of unit i at time q 
is the target value of unit i at time q 
is the error value of unit i at time q 

is the weight between 0; and OJ 

is the weight change for this iteration at time q 
is the total weight change for this iteration 

These values are calculated in the same way as in a static net, 

netq,i 
i-1 

L Wi,jOq,j 

j=O 

f(net q,.) 

f' (netq,d( tq,i - 0'1,;) 

nullt 

!'(n('t q ,;) L 6q,jWj,i 

j-=i+l 

nhid + n, < i :S nout 

nhid < i :S nhid + n, 

(3.2.1) 

(3 .2.2) 

(3 .2.3) 

(3.2.4) 

(3 .2.5) 

(3.2.6) 

and the total weight change is given by the summation of the partial weight changes for all 
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previous times. 

p 

L Llu'q,i,j 

q=p-P 
p 

L 7]6q,iOq,j 

q=p-P 

(3.2.7) 

(3.2.8) 

Thus, it is possible to train a dynamic net to incorporate the information from any time 
period of finite length, and so l~arn any function which has a finite impulse response.· 

In some situations the approximation to a finite length may not be valid, or the storage 
and computational requirements of such a net may not be feasible. In such situations another 
approach is possible, the infinite input duration dynamic net . 

3.3. THE INFINITE INPUT DURATION (lID) DYNAMIC NET 

Although the forward pass of the FID net of the previous section is a non-linear process, th .. 
backward pass computes the efred of small variations on the forward pass, and is a linear 
process. Thus the recursive learning procedure described in the previous section may be 
compressed into a single operation. 

Given the target values for the output of the net at time p, equations (3.2.3) and (3.2.4) 
define valu~s of 6p,i at the outputs. If we denote this set of 6p,i by Dp then equation (3.2.5) 
states that any 6p ,i in the net at time p is simply a linear transformation o( Dp. Writing the 
transformation matrix as S: 

(3.3.1) 

In particular the set of 6p ,i which is to be fed back into the network at time p - 1 is also 
a linear transformation of Dp 

(3.3.2) 

or for an arbitrary time q: 

(3.3.3) 

so substituting equations (3.3.1) and (3.3.3) into equation (3.2.8): 

p 

( IT T,) D,o"j LlU'i,j 7]L Sq,i (3.3.4) 
q=-oo 7=q+l 

7]Mp,i,i Dp (3.3.5) 

where: 

p 

( IT T}"j M . , L Sq,i (3.3.6) p,',) 
q=-oo "=q+l 

• This is a restriction on the class of functions which can be learned, the output will always be affected 
in some way by all previous inputs giving an infinite impulse response performance. 
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and note that Mp,i,i can be written in terms of Mp-1,i,i : 

Sp,i ( IT T,.) 0p,i + (I: Sq,i 
,.=p+l q=-oo 

(3.3.7) M ., 
P,- ,J 

Sp,iop,i + Mp-1,i,iTp (3.3 .8) 

Hence we can calculate the weight changes for an infinite recursion using only the finite 
matrix M, 

3.3. THE STATE COMPRESSION DYNAMIC NET 

The previous architectures for dynamic nets rely on the propagation of the error signal hack 
ill time to define the format of the information in the state units. All alternative approach 
is to use another error propagation net to define the format of the state units. The overall 
architecture is given in figure 5. 

1-----\1 Tranlllatort---""'" 
Bncoder x(p+1) 

net 

Decoder 
net 

figure 5 

y(p+1) 
net 

The encoder net is trained to code the current input and current state onto the next state, 
while the decoder net is trained to do the reverse operation. The tran81ator net code8 the 
next state onto the desired output. This encoding/decoding attempts to represent the current 
input and the current state in the next state, and by the recursion, it will try to represent all 
previous inputs. Feeding errors back from the translator directs this coding of past inputs to 
those which are useful in forming the output. 

3.4. COMPARISON OF DYNAMIC NET ARCHITECTURES 

III comparing the three architectures for dynamic nets, it is important to consider the compu
tational and memory requirements, and how these requirements scale with increasing context. 

To train an FID net the net must store the past activations of the all the units within 
the time span of thel'necessary context, Using this minimal storage, the computational load 
scales proportiona.lly to the time span considered, as for every new input/output pair the 
net must propagate an error signal back though all the past nets. However, if more sets 
of past activations are stored in a buffer, then it is possible to wait until this buffer is full 
before computing the weight changes. As the buffer size increases the computational load in 
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calculating the weight changes tends to that of a single backward pass through the units, and 
so becomes independent of the amount of coutext. 

The largest matrix required to compute the 110 net is M, which requires a factor of the 
number of outputs of the net more storage than the weight matrix. This must be updated 
on each iteration, a computational requirement larger than that of the FlO net for smaJl 
problems3 . However, if this architecture were implemented on a paraJlel machine it would be 
possible to store the matrix M in a distributed form over the processors, and locally calculate 
the weight changes. Thus, whilst the FID net requires the error signal to be propagated back 
in time in a strictly sequential manner, the 110 net may be implemented in paraJld, with 
possible advantages on parallel machines. 

The state compression net has memory and computational requirements independent of 
the amount of context. This is achieved at the expense of storing recent information in the 
state units whether it is required to compute the output or not . This results in an increased 
computational and memory load over the more efficient FID net when implemented with a 
buffer for past outputs. However, the exclusion of external storage during training gives this 
architecture more biological plausibili ty, constrained of course by the plausibility of the error 
propagation algorithm itself. 

With these considerations in mind, the FlO net was chosen to investigate a 'real world' 
problem, that of the coding of the speech waveform. 

4. APPLICATION TO SPEECH CODING 

The problem of speech coding is one of finding a suitable model to remove redundancy and 
hence reduce the data rate of the speech. The Boltzmann machine learning algorithm has 
already been extended to deal to the dynamic case and applied to speech recognition4. How
ever, previous use of error propagation nets for speech processing has mainly been restricted to 
explicit presentation of the context 5,6 or explicit feeding back the output units to the input 7,8, 

with some work done in usillg units with feedback links to themselves9 . In a similar area, 
static error propagation nets have been used to perform image coding as well as cOllventional 
techniques1o . 

4.1. THE ARCHITECTURE OF A GENERAL CODER 

The coding principle used in this section is not restricted to c.oding speech data. The general 
problem is one of encoding the present input using past input context to form the transmitted 
signal, and decoding this signal using the context ofthe coded signals to regenerate the original 
input. Previous sections have shown that dynamic nets are able to represent context, so two 
dynamic, nets in series form the architecture of the coder, as in figure 6. 

This architecture may be specified by the number of input, state, hidden and transmission 
units. There are as many output units as input units and, in this application, both the 
transmitter and receiver have the same number of state and hidden units. 

The input is combined with the internal state of the transmitter to form the coded signal, 
and then decoded by the receiver using its internal state. Training of the net involves the 
comparison of the input and output to form the error signal, which is thell propagated back 
through past instantiations of the receiver and transmitter in the same way as a for a FID 
dynamic net. 

It is useful to introduce noise into the coded signal during the training to reduce the 
information capacity of the transmission line. This forces the dynamic 11ets to incorporate 
time information, without this constraint both nets can learn a simple transformation without 
any time dependence. The noise can be used to simulate quantisation of the coded signal so 
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quantifying the transmission rate. Unfortunately, a straight implementation of quantisation 
violates tbe requirement of the activation function to be continuous, which is necessary to 
train the net . Instead quantisation to n levels may be simulated by adding a random value 
distributed uniformly in the range + 1/ n to -1 / n to each of the channels in the coded signal. 

4.2. TRAINING OF THE SPEECH CODER 

The chosen problem was to present a sinJZ;le sample of digitised speech to the input, code to 
a single value quantised to fifteen levels, and then to reconstruct tile original speech at the 
output . Fifteen levels was chosen as the point where there is a marked loss in the intelligibility 
of the speech, so implementation of these coding schemes gives an audible improvement. Two 
version of the coder net were implemented, both nets had eight hidden units, with no state 
units for the static time independent case and four state units for the dynamic time dependent 
case. 

The data for this problem was 40 seconds of speech from a single male speaker, digit,ised 
to 12 bits at 10kHz and recorded in a laboratory environment. The speech was divided into 
two halves, the first was used for training and the second for testing. 

The static and the dynamic versions of the architecture were trained on about 20 passes 
through the training data. After training the weights were frozen and the inclusion of random 
noise was replaced by true quantisation of the coded representation. A further pass was then 
made through the test data to yield the performance measurements. 

The adaptive training algorithm of Chan 11 was used to dynamically alter the learning 
rates during training. Previously these machines were trained with fixed learning rates and 
weight update after every sample3 , and the use of the adaptive t.raining algorithm has been 
found to result in a substantially deeper energy minima. Weights were updated after every 
1000 samples, that is about 200 times in one pass of the training data. 

4.3. COMPARISON OF PERFORMANCE 

The performance of a coding schemes can be measured by defining the noise energy as half the 
summed squared difference between the actual output and the desired output. This energy 
is the quantity minimised by the error propagation algorithm. The lower the noise energy in 
relation to the energy of the signal, the higher the performance. 

Three non-connectionist coding schemes were implemented for comparison with the static 
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and dynamic net coders. In the first the signal is linearly quantised within the dynamic range 
of the original signal. In the second the quantiser is restricted to operate over a reduced 
dynamic range, with values outside that range thresholded to the maximuJn and minimum 
outputs of the quantiser. The thresholds of the quantiser were chosen to optimise the signal 
to noise ratio. The third scheme used the technique of Differential Pulse Code Modulation 
(DPCM)12 which involves a linear filter to predict the speech waveform, and the transmitted 
signal is the difference between the real signal and the predicted signal. Another linear filter 
reconstructs the original signal from the difference signal at the receiver. The filter order of 
the DPCM coder was chosen to be the same as the number of state units in the dynamic net 
coder, thus both coders can store the same amount of context enabling a comparison with 
this established technique. 

The resulting noise energy when the signal energy was normalised to unity, and the cor
responding signal to noise ratio are given in table 1 for the five coding techniques. 

coding method normalised signal to noise 
nOise energy ratio in dB 

linear, original thresholds 0.071 11.5 
linear, optimum thresholds 0.041 13.9 

static net 0.049 13.1 
DPCM, optimum thresholds 0.037 14.3 

dynamic net 0.028 15.5 

table 1 

The static net may be compared with the two forms of the linear quantiser. Firstly note 
that a considerable improvemeut in the signal to noise ratio may be achieved by reducing the 
thresholds of the qllantiser from the extremes of the input. This improvement is achieved 
because the distribution of samples in the input is concentrated around the mean value, with 
very few values near the extremes. Thus many samples are represented with greater accuracy 
at the expense of a few which are thresholded. The static net has a poorer performance than 
the linear quantiser with optimum thresholds. The form of the linear quantiser solution is 
within the class of problems which the static net can represent . It's failure to do so can be 
attributed to finding a local minima, a plateau in weight space, or corruption of the true 
steepest descent direction by noise introduced by updating the weights more than once per 
pass through the training data. 

The dynamic net may be compared with the DPCM coding. The output from both these 
coders is no longer constrained to discrete signal levels and the resulting noise energy is lower 
than all the previous examples. The dynamic net has a significantly lower noise energy than 
any other coding scheme, although, from the static net example, this is unlikely to be an 
optimal solution. The dynamic net achieves a lower noise energy than the DPCM coder by 
virtue of the non-linear processing at each unit, and the flexibility of data storage in the state 
units. 

As expected from the measured noise energies, there is an improvement in signal quality 
and intelligibility from the linear quantised speech through to the DCPM and dynamic net 
quantised speech. 

5. CONCLUSION 

This report has developed three architectures for dynamic nets. Each architecture can be 
formulated in a way where the computational requirement is independent of the degree of 
context necessary to learn the solution. The FID architecture appears most suitable for 
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implementation on a sf'rial processor, t.hf' nn archit.f'd,11fe has possihle a(lvant,ages for im
plementation on parallel processors, and the state compression net has a higher degree of 
biological plausibility. 

Two FID dynamic nets have been coupled together to form a coder, and this has been 
applied to speech coding. Although the dynamic net coder is unlikely to have learned the 
optimum coding strategy, it does delUonstrate that dynamic nets can be used to 8.Chieve an 
improved performance in a real world task over an estaBlished conventional technique. 

One of the authors, A J Robinson, is supported by a maintenance grant from the U.K. 
Science and Engineering Research Council, and gratefully acknowledges this support. 

References 

[1] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by 
error propagation. In D. E. Rumelhart and J. L. McClelland, editors, Parallel Distributed 
Processing: E2:plorations in the M1crostructure of Cognition, Vol. 1: Foundations., Brad
ford Books/MIT Press, Cambridge, MA , 1986, 

[2] O. L. R. Jacobs. IntroductIOn to Contml Theory. Clarendon Press, Oxford, 1974. 

[3J A. J. Robinson and F. Fallside. The Utility Drit'en Dynamic Error Propagation Net
work. Technical Report CUED/F-INFENG/TR.l, Cambridge University Engineering 
Department, 1987. 

[4J R. W. Prager, T. D. Harrison, and F. Fallside, Boltzmann machines for speech recogni
tion. Compllter Speech and Language, 1:3-27, 1986, 

[5] J. L. Elman and D. Zipser. Learning the Hidden Structure of Speech. ICS Report 8701, 
University of California, San Diego, 1987. 

[6] A. J. Robinson. Speech Rerognition wIth Associatille Networks. M.Phil Computer Speech 
and Language Processing thesis, Cambridge University Engineering Department, 1986. 

[7] M. I. Jordan. Serial Order: A Parallel Distributed Processing Approach. ICS Re
port 8604, Institute for Cognitive Science, University of California, San Diego, May 
1986. 

[8] D. J, C. MacKay. A Method of Increa,sing the Conte2:tual Input to Adaptive Pattern 
Recognition Systems. Technical Report RIPRREP /1000 /14/87, Research Initiative in 
Pattern Recognition, RSRE, Malvern, 1987. 

[9) R. L. Watrous, L. Shastri, and A. H. Waibel. Learned phonetic discrimination using 
connectionist networks. In J . Laver and M. A. Jack, editors, Proceedings of the Etl.ropea,n 
Conference on Speech Technology, CEP Consultants Ltd, Edinburgh, September 1987. 

(10) G. W. Cottrell, P. Munro, and D Zipser. Image Compression by Back Propagation: An 
E2:ample of Existential Programming. ICS Report 8702, Institute for Cognitive Science, 
University of California, San Diego, Febuary 1986. 

[11) L. W . Chan and F. Fallside. An Adaptive Learning Algori.thm for Back Propaga.tion Net
works . Technical Report CUED / F-INFENG/TR.2, Cambridge University Engineering 
Department, 1987, submitted to Compute?' Speech and Language. 

[12] L, R. Rabiner and R. W, Schefer . DIgital Processmg of Speech Signals. Prentice Hall, 
Englewood Cliffs, New Jersey, 1978. 


