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ABSTRACT 

Artificial neural networks (ANNs) are capable of accurate recognition of 
simple speech vocabularies such as isolated digits [1]. This paper looks at two 
more difficult vocabularies, the alphabetic E-set and a set of polysyllabic 
words. The E-set is difficult because it contains weak discriminants and 
polysyllables are difficult because of timing variation. Polysyllabic word 
recognition is aided by a time pre-alignment technique based on dynamic pro­
gramming and E-set recognition is improved by focusing attention. Recogni­
tion accuracies are better than 98% for both vocabularies when implemented 
with a single layer perceptron. 

INTRODUCTION 

Artificial neural networks perform well on simple pattern recognition 
tasks. On speaker trained spoken digits a layered network performs as accu­
rately as a conventional nearest neighbor classifier trained on the same tokens 
[1]. Spoken digits are easy to recognize since they are for the most part 
monosyllabic and are distinguished by strong vowels. 

It is reasonable to ask whether artificial neural networks can also solve 
more difficult speech recognition problems. Polysyllabic recognition is difficult 
because multi-syllable words exhibit large timing variation. Another difficult 
vocabulary, the alphabetic E-set, consists of the words B, C, D, E, G, P, T, V, 
and Z. This vocabulary is hard since the distinguishing sounds are short in 
duration and low in energy. 

We show that a simple one-layer perceptron [7] can solve both problems 
very well if a good input representation is used and sufficient examples are 
given. We examine two spectral representations - a smoothed FFT (fast 
Fourier transform) and an LPC (linear prediction coefficient) spectrum. A 
time stabilization technique is described which pre-aligns speech templates 
based on peaks in the energy contour. Finally, by focusing attention of the 
artificial neural network to the beginning of the word, recognition accuracy of 
the E-set can be consistently increased. 

A layered neural network, a relative of the earlier percept ron [7], can be 
trained by a simple gradient descent process [8]. Layered networks have been 
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applied successflJ.lly to speech recognition [1], handwriting recognition [2], and 
to speech synthesis [11]. A variation of a layered network [3] uses feedback to 
model causal constraints, which can be useful in learning speech and language. 
Hidden neurons within a layered network are the building blocks that are used 
to form solutions to specific problems. The number of hidden units required is 
related to the problem [1,2]. Though a single hidden layer can form any map­
ping [12], no more than two layers are needed for disjunctive normal form [4]. 
The second layer may be useful in providing more stable learning and 
representation in the presence of noise. Though neural nets have been shown 
to perform as well as conventional techniques[I,5], neural nets may do better 
when classes have outliers [5]. 

PERCEPTRONS 

A simple perceptron contains one input layer and one output layer of 
neurons directly connected to each other (no hidden neurons). This is often 
called a one-layer system, referring to the single layer of weights connecting 
input to output. Figure 1. shows a one-layer perceptron configured to sense 
speech patterns on a two-dimensional grid. The input consists of a 64-point 
spectrum at each of twenty time slices. Each of the 1280 inputs is connected 
to each of the output neurons, though only a sampling of connections are 
shown. There is one output neuron corresponding to each pattern class. Neu­
rons have standard linear-weighted inputs with logistic activation. 

C(1) C(2) 

FR:<lBC'V .... 
64 units 

C(N-1) C(N) 

Figure 1. A single layer perceptron sensing a time-frequency array of sample 
data. Each output neuron CU) (1 <i<N) corresponds to a pattern class and 
is full connected to the input array (for clarity only a few connections are 
shown). 

An input word is fit to the grid region by applying an automatic endpoint 
detection algorithm. The algorithm is a variation of one proposed by Rabiner 
and Sambur [9] which employs a double threshold successive approximation 
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method. Endpoints are determined by first detecting threshold crossings of 
energy and then of zero crossing rate. In practice a level crossing other than 
zero is used to prevent endpoints from being triggered by background sounds. 

INPUT REPRESENTATIONS 

Two different input representations were used in this study. The first is a 
Fourier representation smoothed in both time and frequency. Speech is sam­
pled at 10 KHz ap.d Hamming windowed at a number of sample points. A 
128-point FFT spectrum is computed to produce a template of 64 spectral 
samples at each of twenty time frames. The template is smoothed twice with a 
time window of length three and a frequency window of length eight. 

For comparison purposes an LPC spectrum is computed using a tenth 
order model on 300-sample Hamming windows. Analysis is performed using 
the autocorrelation method with Durbin recursion [6]. The resulting spectrum 
is smoothed over three time frames. 

Sample spectra for the utterance "neural-nets" is shown in Figure 2. 
Notice the relative smoothness of the LPC spectrum which directly models 
spectral peaks. 

FFT LPC 

Figure 2. FFT and LPC time-frequency plots for the utterance "neural nets". 
Time is toward the left, and frequency, toward the right. 

DYNAMIC TIME ALIGMv1ENT 

Conventional speech recognition systems often employ a time normaliza­
tion technique based on dynamic programming [10]. It is used to warp the 
time scales of two utterances to obtain optimal alignment between their spec­
tral frames. We employ a variation of dynamic programming which aligns 
energy contours rather than spectra. A reference energy template is chosen 
for each pattern class, and incoming patterns are warped onto it. Figure 3 
shows five utterances of "neural-nets" both before and after time alignment. 
Notice the improved alignment of energy peaks. 



147 

§ I 

§ § 

§ I 

>-
\b 
~ ~ II 
III 
z 
W 

~ ~ 

!I ! 

.. .. 10 10 . .. 
(a. ) TIME (b) 

Figure 3. (a) Superimposed energy plots of five different utterances of "neural 
nets". (b). Same utterances after dynamic time alignment. 

POLYSYLLABLE RECOGNITION 

Twenty polysyllabic words containing three to five syllables were chosen, 
and five tokens of each were recorded by a single male speaker. A variable 
number of tokens were used to train a simple perceptron to study the effect of 
training set size on performance. Two performance measures were used: 
classification accuracy, and an RMS error measure. Training tokens were per­
muted to obtain additional experimental data points. 

Figure 4. Output responses of a perceptron trained with one token per class 
(left) and four tokens per class (right). 
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Figure 4 shows two representative perspective plots of the output of a 
perceptron trained on one and four tokens respectively per class. Plots show 
network response (z-coordinate) as a function of output node (left axis) and 
test word index (right axis). Note that more training tokens produce a more 
ideal map - a map should have ones along the diagonal and zeroes everywhere 
else. 

Table 1 shows the results of these experiments for three different 
representations: (1) FFT, (2) LPC and (3) time aligned LPC. This table lists 
classification accuracy as a function of number of training tokens and input 
representation. The perceptron learned to classify the unseen patterns per­
fectly for all cases except the FFT with a single training pattern. 

Table 1. Polysyllabic Word Recognition AccuraclT 
Number Training Tokens 1 2 3 4 

FFT 98.7% 100% 100% 100% 
LPC 100% 100% 100% 100% 

Time Aligned LPC 100% 100% 100% 100% 
Permuted Trials 400 300 200 100 

A different performance measure, the RMS error, evaluates the degree to 
which the trained network output responses Rjk approximate the ideal targets 
T jk • The measure "is evaluated over the N non-trained tokens and M output 
nodes of the network. Tik equals 1 for J=k and 0 for J=I=k. 

Figure 5 shows plots of RMS error as a function of input representation 
and training patterns. Note that the FFT representation produced the highest 
error, LPC was about 40% less, and time-aligned LPC only marginally better 
than non-aligned LPC. In a situation where many choices must be made (i.e. 
vocabularies much larger than 20 words) LPC is the preferred choice, and 
time alignment could be useful to disambiguate similar words. Increased 
number of training tokens results in improved performance in all cases. 
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Figure 5. RMS error versus number of training tokens for various input 
representations. 

E-SET VOCABULARY 

The E-Set vocabulary consists of the nine E-words of the English alpha­
bet - B, C, D, E, G, P, T, V, Z. Twenty tokens of each of the nine classes 
were recorded by a single male speaker. To maximize the sizes of training and 
test sets, half were used for training and the other half for testing. Ten per­
mutations produced a total of 900 separate recognition trials. 

Figure 6 shows typical LPC templates for the nine classes. Notice the 
double formant ridge due to the ''E'' sound, which is common to all tokens. 
Another characteristic feature is the FO ridge - the upward fold on the left of 
all tokens which characterizes voicing or pitched sound. 
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Figure 6. LP C time-frequency plots for representative tokens of the E-set 
words. 

Figure 7. Time-frequency plots of weight values connected to each output 
neuron ''E'' through "z" in a trained perceptron. 
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Figure 7 shows similar plots illustrating the weights learned by the net­
work when trained on ten tokens of each class. These are plotted like spectra, 
since one weight is associated with each spectral sample. Note that the pat­
terns have some formant structure. A recognition accuracy of 91.4% included 
perfect scores for classes C, E, and G. 

Notice that weights along the FO contour are mostly small and some are 
slightly negative. This is a response to the voiced ''E" sound common to all 
classes. The network has learned to discount "voicing" as a discriminator for 
this vocabulary. 

Notice also the strong "hilly" terrain near the beginning of most tem­
plates. This shows where the network has decided to focus much of its 
discriminating power. Note in particular the hill-valley pair at the beginning 
of ''p'' and "T". These are near to formants F2/F3 and could conceivably be 
formant onset detectors. Note the complicated detector pattern for the ''V'' 
sound. 

The classes that are easy to discriminate (C, E, G) produce relatively fiat 
and uninter~sting weight spaces. A highly convoluted weight space must 
therefore be correlated with difficulty in discrimination. It makes little sense 
however that the network should be working hard in the late time C'E" sound) 
portion of the utterance. Perhaps additional training might reduce this 
activity, since the network would eventually find little consistent difference 
there. 

A second experiment was conducted to help the network to focus atten­
tion. The first k frames of each input token were averaged to produce an aver­
age spectrum. These average spectra were then used in a simple nearest 
neighbor recognizer scheme. Recognition accuracy was measured as a function 
of k. The highest performance was for k=8, indicating that the first 40% of 
the word contained most of the "action". 

B C D E C P T V Z 

B 08 0 0 0 0 0 0 

c 0 100 0 0 0 0 0 0 0 

D 0 0 08 0 0 2 0 0 0 

E 0 0 0 100 0 0 0 0 0 

c 0 0 0 0 100 0 0 0 0 

p 0 0 3 0 0 03 4 0 0 

T 0 0 0 0 0 0 100 0 0 

V 2 0 0 0 0 2 0 08 0 

Z 0 0 0 0 0 0 0 09 

Figure 8. Confusion matrix of the E-set focused on the first 40% of each 
word. 
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All words were resampled to concentrate 20 time frames into the first 
40% of the word. LPC spectra were recomputed using a 16th order model 
and the network was trained on the new templates. Performance increased 
from 91.4% to 98.2%. There were only 16 classification errors out of the 900 
recognition tests. The confusion matrix is shown in Figure 8. Learning times 
for all experiments consisted of about ten passes through the training set. 
When weights were primed with average spectral values rather than random 
values, learning time decreased slightly. 

CONCLUSIONS 

Artificial neural networks are capable of high performance in pattern 
recognition applications, matching or exceeding that of conventional 
classifiers. We have shown that for difficult speech problems such as time 
alignment and weak discriminability, artificial neural networks perform at 
high accuracy exceeding 98%. One-layer perceptrons learn these difficult tasks 
almost effortlessly - not in spite of their simplicity, but because of it. 
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