
804 

INTRODUCTION TO A SYSTEM FOR IMPLEMENTING NEURAL NET 
CONNECTIONS ON SIMD ARCHITECTURES 

Sherryl Tomboulian 

Institute for Computer Applications in Science and Engineering 
NASA Langley Research Center, Hampton VA 23665 

ABSTRACT 

Neural networks have attracted much interest recently, and using parallel 
architectures to simulate neural networks is a natural and necessary applica
tion. The SIMD model of parallel computation is chosen, because systems of 
this type can be built with large numbers of processing elements. However, 
such systems are not naturally suited to generalized communication. A method 
is proposed that allows an implementation of neural network connections on 
massively parallel SIMD architectures. The key to this system is an algorithm 
that allows the formation of arbitrary connections between the "neurons". A 
feature is the ability to add new connections quickly. It also has error recov
ery ability and is robust over a variety of network topologies. Simulations of 
the general connection system, and its implementation on the Connection Ma
chine, indicate that the time and space requirements are proportional to the 
product of the average number of connections per neuron and the diameter of 
the interconnection network. 

INTRODUCTION 

Neural Networks hold great promise for biological research, artificial intelli
gence, and even as general computational devices. However, to study systems 
in a realistic manner, it is highly desirable to be able to simulate a network 
with tens of thousands or hundreds of thousands of neurons. This suggests the 
use of parallel hardware. The most natural method of exploiting parallelism 
would have each processor simulating a single neuron. 

Consider the requirements of such a system. There should be a very large 
number of processing elements which can work in parallel. The computation 
that occurs at these elements is simple and based on local data. The processing 
elements must be able to have connections to other elements. All connections 
in the system must be able to be traversed in parallel. Connections must be 
added and deleted dynamically. 

Given current technology, the only type of parallel model that can be con
structed with tens of thousands or hundreds of thousands of processors is an 
SIMD architecture. In exchange for being able to build a system with so many 
processors, there are some inherent limitations. SIMD stands for single instruc
tion multiple datal which means that all processors can work in parallel, but 
they must do exactly the same thing at the same time. This machine model 
is sufficient for the computation required within a neuron, however in such a 
system it is difficult to implement arbitrary connections between neurons. The 
Connection Machine2 provides such a model, but uses a device called the router 

This work was supported by the National Aeronautics and Space Administration under 
NASA Constract No. NASl-18010-7 while the author was in residence at ICASE. 

© American Institute of Physics 1988 



805 

to deliver messages. The router is a complex piece of hardware that uses signif
icant chip area, and without the additional hardware for the router, a machine 
could be built with significantly more processors. Since one of the objectives is 
to maximize the number of "neurons" it is desirable to eliminate the extra cost 
of a hardware router and instead use a software method. 

Existing software algorithms for forming connections on SIMD machines 
are not sufficient for the requirements of a neural networks. They restrict the 
form of graph (neural network) that can be embedded to permutations!·· or 
sorts5.6combinedwith7, the methods are network specific, and adding a new connec
tion is highly time consuming. 

The software routing method presented here is a unique algorithm which al
lows arbitrary neural networks to be embedded in machines with a wide variety 
of network topologies. The advantages of such an approach are numerous: A 
new connection can be added dynamically in the same amount of time that it 
takes to perform a parallel traversal of all connections. The method has error 
recovery ability in case of network failures. This method has relationships with 
natural neural models. When a new connection is to be formed, the two neurons 
being connected are activated, and then the system forms the connection with
out any knowledge of the "address" of the neuron-processors and without any 
instruction as to the method of forming the connecting path. The connections 
are entirely distributed; a processor only knows that connections pass through 
it - it doesn't know a connection's origin or final destination. 

Some neural network applications have been implemented on massively par
allel architectures, but they have run into restrictions due to communication. 
An implementation on the Connection Machines discovered that it was more 
desirable to cluster processors in groups, and have each processor in a group 
represent one connection, rather than having one processor per neuron, because 
the router is designed to deliver one message at a time from each processor. This 
approach is contrary with the more natural paradigm of having one processor 
represent a neuron. The MPP 9, a massively parallel architecture with proces
sors arranged in a mesh, has been used to implement neural nets10, but because 
of a lack of generalized communication software, the method for edge connec
tions is a regular communication pattern with all neurons within a specified 
distance. This is not an unreasonable approach, since within the brain neurons 
are usually locally connected, but there is also a need for longer connections 
between groups of neurons. The algorithms presented here can be used on 
both machines to facilitate arbitrary connections with an irregular number of 
connections at each processor. 

MACHINE MODEL 

As mentioned previously, since we desire to build a system with an large 
number of processing elements, the only technology currently available for build
ing such large systems is the SIMD architecture model. In the SIMD model 
there is a single control unit and a very large number of slave processors that 
can execute the same instruction stream simultaneously. It is possible to disable 
some processors so that only some execute an instruction, but it is not possible 
to have two processor performing different instructions at the same time. The 
processors have exclusively local memory which is small (only a few thousand 
bits), and they have no facilities for local indirect addressing. In this scheme 
an Instruction involves both a particular operation code and the local memory 



806 

address. All processors must do this same thing to the same areas of their local 
memory at the same time. 

The basic model of computation is bit-serial - each instruction operates on 
a bit at a time. To perform multiple bit operations, such as integer addition, 
requires several instructions. This model is chosen because it requires less 
hardware logic, and so would allow a machine to be built with a larger number 
of processors than could otherwise be achieved with a standard word-oriented 
approach. Of course, the algorithms presented here will also work for machines 
with more complex instruction abilities; the machine model described satisfies 
the minimal requirements. 

An important requirement for connection formation is that the processors 
are connected in some topology. For instance, the processors might be con
nected in a grid so that each processor has a North, South, East, and West 
neighbor. The methods presented here work for a wide variety of network 
topologies. The requirements are: (1) there must be some path between any 
two proeessors; (2) every neighbor )ink must be bi-directional, i.e. if A is a 
neighbor of B, then B must be a neighbor of A; (3) the neighbor relations 
between processors must have a consistent invertible labeling. A more pre
cise definition of the labeling requirements can be found in 11. It suffices that 
most networks 12, including grid, hypercube, cube connected cycles1S, shuffle 
exchange14 , and mesh of trees15 are admissible under the scheme. Additional 
requirements are that the processors be able to read from or write to their 
neighbors' memories, and that at least one of the processors acts as a serial 
port between the processors and the controller. 

COMPUTATIONAL REQUIREMENTS 

The machine model described here is sufficient for the computational re
quirements of a neuron. Adopt the paradigm that each processor represents one 
neuron. While several different models of neural networks exist with slightly 
different features, they are all fairly well characterized by computing a sum or 
product of the neighbors values, and if a certain threshold is exceeded, then 
the processor neuron will fire, Le. activate other neurons. The machine model 
described here is more efficient at boolean computation, such as described by 
McCulloch and Pitts16, since it is bit serial. Neural net models using integers 
and floating point arithmetic 17,18 will also work but will be somewhat slower 
since the time for computation is proportional to the number of bits of the 
operands. 

The only computational difficulty lies in the fact that the system is SIMD, 
which means that the processes are synchronous. For some neural net models 
this is sufficient18 however others require asynchronous behavior 17. This can 
easily be achieved simply by turning the processors on and off based on a spec
ified probability distribution. (For a survey of some different neural networks 
see 19). 

CONNECTION ASSUMPTIONS 

Many models of neural networks assume fully connected systems. This 
model is considered unrealistic, and the method presented here will work better 
for models that contain more sparsely connected systems. While the method 
will work for dense connections, the time and space required is proportional to 



807 

the number of edges, and becomes prohibitively expensive. 
Other than the sparse assumptions, there are no restrictions to the topo

logical form of the network being simulated. For example, multiple layered 
systems, slightly irregular structures, and completely random connections are 
all handled easily. The system does function better if there is locality in the 
neural network. These assumptions seem to fit the biological model of neurons. 

THE CONNECTION FORMATION METHOD 

A fundamental part of a neural network implementation is the realization of 
the connections between neurons. This is done using a software scheme first pre
sented in 11,20. The original method was intended for realizing directed graphs 
in SIMD architectures. Since a neural network is a graph with the neurons 
being vertices and the connections being arcs, the method maps perfectly to 
this system. Henceforth the terms neuron and vertex and the terms arc and 
connection will be used interchangeably. 

The software system presented here for implementing the connections has 
several parts. Each processor will be assigned exactly one neuron. (Of course 
some processors may be "free" or unallocated, but even "free" processor par
ticipate in the routing process.) Each connection will be realized as a path 
in the topology of processors. A labeling of these paths in time and space is 
introduced which allows efficient routing algorithms and a set-up strategy is 
introduced that allows new connections to be added quickly. 

The standard computer science approach to forming the connection would 
be to store the addresses of the processors to which a given neuron is connected. 
Then, using a routing algorithm, messages could be passed to the processors 
with the specified destination. However, the SIMD architecture does not lend 
itself to standard message passing schemes because processors cannot do indi
rect addressing, so buffering of values is difficult and costly. 

Instead, a scheme is introduced which is closer to the natural neuron-synapse 
structures. Instead of having an address for each connection, the connection 
is actually represented as a fixed path between the processors, using time as a 
virtual dimension. The path a connection takes through the network of pro
cessors is statically encoded in the local memories of the neurons that it passes 
through. To achieve this, the following data structures will be resident at each 
processor. 

ALLOCATED ---- boolean flag indicating 
whether this processor is assigned 
a vertex (neuron) in the graph 

VERTEX LABEL --- label of graph vertex (neuron) 
HAS_NEIGHBOR[l .. neighbor_limit] flag 

indicating the existence of neighbors 
SLOTS[l .. T] OF arc path information 

START----------new arc starts here 
DIRECTION------direction to send 

{l .. neighbor_limit.FREE} 
END-----------arc ends here 
ARC LABEL-----label of arc 



808 

The ALLOCATED and VERTEX LABEL field indicates that the processor 
has been assigned a vertex in the graph (neuron). The HAS NEIGHBOR field 
is used to indicate whether a physical wire exists in the particular direction; it 
allows irregular network topologies and boundary conditions to be supported. 
The SLOTS data structure is the key to realizing the connections. It is used 
to instruct the processor where to send a message and to insure that paths are 
constructed in such a way that no collisions will occur. 

SLOTS is an array with T elements. The value T is called the time quantum. 
Traversing all the edges of the embedded graph in parallel will take a certain 
amount of time since messages must be passed along through a sequence of 
neighboring processors. Forming these parallel connections will be considered 
an uninterruptable operation which will take T steps. The SLOTS array is used 
to tell the processors what they should do on each relative time position within 
the time quantum. 

One of the characteristics of this algorithm is that a fixed path is chosen to 
represent the connection between two processors, and once chosen it is never 
changed. For example, consider the grid below. 

I I I I I 
--A--B--C--D--E--

I I I I I 
--F--G--H--I--J--

I I I I I 

Fig. 1. Grid Example 

If there is an arc between A and H, there are several possible paths: East
East-South, East-South-East, and South-East-East. Only one of these paths 
will be chosen between A and H, and that same path will always be used. 
Besides being invariant in space, paths are also invariant in time. As stated 
above, traversal is done within a time quantum T. Paths do no have to start 
on time 1, but can be scheduled to start at some relative offset within the 
time quantum. Once the starting time for the path has been fixed, it is never 
changed. Another requirement is that a message can not be buffered, it must 
proceed along the specified directions without interruption. For example, if 
the path is of length 3 and it starts at time 1, then it will arrive at time 
4. Alternatively, if it starts at time 2 it will arrive at time 5. Further, it is 
necessary to place the paths so that no collisions occur; that is, no two paths 
can be at the same processor at the same instant in time. Essentially time 
adds an extra dimension to the topology of the network, and within this space
time network all data paths must be non-conflicting. The rules for constructing 
paths that fulfill these requirements are listed below . 

• At most one connection can enter a processor at a given time, and at 
most one connection can leave a processor at a given time. It is possible 
to have both one coming and one going at the same time. Note that this 
does not mean that a processor can have only one connection; it means 
that it can have only one connection during anyone of the T time steps. 
It can have as many as T connections going through it . 

• Any path between two processors (u,v) repr('senting a connection must 
consist of steps at contiguous times. For example, if the path from pro
cessor u to processor v is u,f,g,h,v, then if the arc from u-f is assigned 
time 1, f-g must have time 2, g-h time 3, and h-v time 4. Likewise if u-f 
occurs at time 5, then arc h-v will occur time 8. 



809 

When these rules are used when forming paths, the SLOTS structure can 
be used to mark the paths. Each path goes through neighboring processors at 
successive time steps. For each of these time steps the DffiECTION field of 
the SLOTS structure is marked, telling the processor which direction it should 
pass a message if it receives it on that time. SLOTS serves both to instruct the 
processors how to send messages, and to indicate that a processor is busy at a 
certain time slot so that when new paths are constructed it can be guaranteed 
that they won't conflict with current paths. 

Consider the following example. Suppose we are given the directed graph 
with vertices A,B,C,D and edges A - > C, B - > C,B - > D, and D - > 
A. This is to be done where A,B,C, and D have been assigned to successive 
elements of a linear array. (A linear array in not a good network for this 
scheme, but is a convenient source of examples.) 

Lo~ical Connections 

Faa. 2. GIapb Example 

A.B.C.D are successive members in a linear array 

1---2---3---4 
A---B---C---D 

First. A ->C can be completed with the map East-East. so 
Slots[A][1].direction = E. Slots[B][2].direction=E. 
Slots[C][2].end = 1 . 

B->C can be done with the map East. it can start at time 1. 
since Slots[B] [1] . direction and Slots[C] [1].end are free. 

B->D goes through C then to D. its map is East-East. B is 
occupied at time 1 and 2. It is free at time 3. 
so Slots[B] [3].direction = E. Slots[C] [4].direction = E. 
Slots[D] [4].end = 1. 

D->A must go through C.B.A. using map West-West-West. 
D is free on time 1. C is free on time 2. but B is occupied 
on time 3. D is free on time 2. but C is occupied on time 3. 
It can start from D at time 3. Slots[D] [3].direction = W. 
Slots[C] [4] .direction = W. Slots[B] [5].direction = W. 
Slots [A] [5].end=1 



810 

Every processor acts as a conduit for its neighbors messages. No processor 
knows where any message is going to or coming from, but each processor knows 
what it must do to establish the local connections. 

The use of contiguous time slots is vital to the correct operation of the 
system. If all edge-paths are established according to the above rules, there is 
a simple method for making the connections. The paths have been restricted 
so that there will be no collisions, and paths' directions use consecutive time 
slots. Hence if all arcs at time i send a message to their neighbors, then each 
processor is guaranteed no more than 1 message coming to it. The end of a 
path is specified by setting a separate bit that is tested after each message 
is received. A separate start bit indicates when a path starts. The start bit 
is needed because the SLOTS array just tells the processors where to send a 
message, regardless of how that message arrived. The start array indicates 
when a message originates, as opposed to arriving from a neighbor. 

The following algorithm is basic to the routing system. 

for i = time 1 to T 
FORALL processors 

/* if an arc starts or is passing through at this time*/ 
if SLOT[i] . START = 1 or active = 1 

for j=1 to neighbor-limit 
if SLOT[i].direction= j 

write message bit to in-box 
of neighbor j: 

set active = 0: 
FORALL processor that just received a message 
if end[i] 

move in-box to message-destination; 
else 

move in-box to out-box: 
set active bit = 1: 

This code follows the method mentioned above. The time slots are looped 
through and the messages are passed in the appropriate directions as specified 
in the SLOTS array. Two bits, in-box and out-box, are used for message passing 
so that an out-going message won't be overwritten by an in-coming message 
before it gets transferred. The inner loop lor j = 1 to neighbor limit checks 
each of the possible neighbor directions and sends the message to the correct 
neighbor. For instance, in a grid the neighbor limit is 4, for North, South, East, 
and West neighbors. The time complexity of data movement is O(T times 
neighbor-limi t) . 

SETTING UP CONNECTIONS 

One of the goals in developing this system was to have a method for adding 
new connections quickly. Paths are added so that they don't conflict with any 
previously constructed path. Once a path is placed it will not be re-routed 



811 

by the basic placement algorithm; it will always start at the same spot at the 
same time. The basic idea of the method for placing a connection is to start 
from the source processor and in parallel examine all possible paths outward 
from it that do not conflict with pre-established paths and which adhere to the 
sequential time constraint. As the trial paths are flooding the system, they 
are recorded in temporary storage. At the end of this deluge of trial paths all 
possible paths will have been examined. If the destination processor has been 
reached, then a path exists under the current time-space restrictions. Using 
the stored information a path can be backtraced and recorded in the SLOTS 
structure. This is similar to the Lee-Moore routing algorithm21•22 for finding a 
path in a system, but with the sequential time restriction. 

For example, suppose that the connection (u,v) is to be added. First it is 
assumed that processors for u and v have already been determined, otherwise 
(as a simplification) assume a random allocation from a pool of free proces
sors. A parallel breadth-first search will be performed starting from the source 
processor. During the propagation phase a processor which receives a message 
checks its SLOTS array to see if they are busy on that time step, if not it will 
propagate to its neighbors on the next time step. For instance, suppose a trial 
path starts at time 1 and moves to a neighboring processor, but that neighbor is 
already busy at time 1 (as can be seen by examining the DIRECTION-SLOT.) 
Since a path that would go through this neighbor at this time is not legal, the 
trial path would commit suicide, that is, it stops propagating itself. If the pro
cessor slot for time 2 was free, the trial path would attempt to propagate to all 
of its' neighbors at time 3. 

Using this technique paths can be constructed with essentially no knowl
edge of the relative locations of the "neurons" being connected or the underly
ing topology. Variations on the outlined method, such as choosing the shortest 
path, can improve the choice of paths with very little overhead. If the entire net
work were known ahead of time, an off-line method could be used to construct 
the paths more efficiently; work on off-line methods is underway. However, the 
simple elegance of this basic method holds great appeal for systems that change 
slowly over time in unpredictable ways. 

PERFORMANCE 

Adding an edge (assuming one can be added), deleting any set of edges, or 
traversing all the edges in parallel, all have time complexity O(T x neighbor
limit). If it is assumed that neighbor limit is a small constant then the com
plexity is O(T). Since T is related both to the time and space needed, it is 
a crucial factor in determining the value of the algorithms presented. Some 
analytic bounds on T were presented inll, but it is difficult to get a tight bound 
on T for general interconnection networks and dynamically changing graphs. A 
simulator was constructed to examine the behavior of the algorithms. Besides 
the simulated data, the algorithms mentioned were actually implemented for 
the Connection Machine. The data produced by the simulator is consistent 
with that produced by the real machine. The major result is that the size of T 
appears proportional to the average degree of the graph times the diameter of 
the interconnection network20• 



812 

FURTHER RESEARCH 

This paper has been largely concerned with a system that can realize the 
connections in a neural network when the two neurons to be joined have been 
activated. The tests conducted have been concerned with the validity of the 
method for implementing connections, rather than with a full simulation of a 
neural network. Clearly this is the next step. 

A natural extension of this method is a system which can form its .own 
connections based solely on the activity of certain neurons, without having 
to explicitly activate the source and destination neurons. This is an exciting 
avenue, and further results should be forthcoming. 

Another area of research involves the formation of branching paths. The 
current method takes an arc in the neural network and realizes it as a unique 
path in space-time. A variation that has similarities to dendritic structure 
would allow a path coming from a neuron to branch and go to several target 
neurons. This extension would allow for a much more economical embedding 
system. Simulations are currently underway. 

CONCLUSIONS 

A method has been outlined which allows the implementation of neural nets 
connections on a class of parallel architectures which can be constructed with 
very large numbers of processing elements. To economize on hardware so as to 
maximize the number of processing element buildable, it was assumed that the 
processors only have local connections; no hardware is provided for communi
cation. Some simple algorithms have been presented which allow neural nets 
with arbitrary connections to be embedded in SIMD architectures having a va
riety of topologies. The time for performing a parallel traversal and for adding 
a new connection appears to be proportional to the diameter of the topology 
times the average number of arcs in the graph being embedded. In a system 
where the topology has diameter O(logN), and where the degree of the graph 
being embedded is bounded by a constant, the time is apparently O(logN). 
This makes it competitive with existing methods for SIMD routing, with the 
advantages that there are no apriori requirements for the form of the data, and 
the topological requirements are extremely general. Also, with our approach 
new arcs can be added without reconfiguring the entire system. The simplicity 
of the implementation and the flexibility of the method suggest that it could be 
an important tool for using SIMD architectures for neural network simulation. 

BIBLIOGRAPHY 

1. M.J. Flynn, "Some computer organizations and their effectiveness", IEEE 
Trans Comput., vol C-21, no.9, pp. 948-960. 
2. W. Hillis, "The Connection Machine", MIT Press, Cambridge, Mass, 1985. 
3. D. Nassimi, S. Sahni, "Parallel Algorithms to Set-up the Benes Permutation 
Network", Proc. Workshop on Interconnection Networks for Parallel and Dis
tributed Processing, April 1980. 
4. D. Nassimi, S. Sahni, "Benes Network and Parallel Permutation Algorithms", 
IEEE Transactions on Computers, Vol C-30, No 5, May 1981. 
5. D. Nassimi, S. Sahni, "Parallel Permutation and Sorting Algorithms and a 



813 

New Generalized Connection Network" , JACM, Vol. 29, No.3, July 1982 pp. 
642-667 
6. K.E. Batcher, "Sorting Networks and their Applications", The Proceedings 
of AFIPS 1968 SJCC, 1968, pp. 307-314. 
7. C. Thompson, "Generalized connection networks for parallel processor inter
communication", IEEE Tran. Computers, Vol C, No 27, Dec 78, pp. 1119-1125. 
8. Nathan H. Brown, Jr., "Neural Network Implementation Approaches for the 
Connection Machine", presented at the 1987 conference on Neural Information 
Processing Systems - Natural and Synthetic. 
9. K.E. Batcher, "Design of a massively parallel processor", IEEE Trans on 
Computers, Sept 1980, pp. 836-840. 
10. H.M. Hastings, S. Waner, "Neural Nets on the MPP" , Frontiers of Massively 
Parallel Scientific Computation, NASA Conference Publication 2478, NASA 
Goddard Space Flight Center, Greenbelt Maryland, 1986. 
11. S. Tomboulian, "A System for Routing Arbitrary Communication Graphs 
on SIMD Architectures", Doctoral Dissertation, Dept of Computer Science, 
Duke University, Durham NC. 
12. T. Feng, "A Survey of Interconnection Networks", Computer, Dec 1981, 
pp.12-27. 
13. F. Preparata and J. Vuillemin, "The Cube Connected Cycles: a Versatile 
Network for Parallel Computation", Comm. ACM, Vol 24, No 5 May 1981, pp. 
300-309. 
14. H. Stone, "Parallel processing with the perfect shuffle", IEEE Trans. Com
puters, Vol C, No 20, Feb 1971, pp. 153-161. 
15. T. Leighton, "Parallel Computation Using Meshes of Trees", Proc. Inter
national Workshop on Graph Theory Concepts in Computer Science, 1983. 
16. W.S. McCulloch, and W. Pitts, "A Logical Calculus of the Ideas Imminent 
in Nervous Activity," Bulletin of Mathematical Biophysics, Vol 5, 1943, pp.115-
133. 
17. J.J. Hopfield, "Neural networks and physical systems with emergent col
lective computational abilities", Prot!. Natl. Aca. Sci., Vol 79, April 1982, pp. 
2554-2558. 
18. T. Kohonen, "Self-Organization and Associative Memory, Springer-Verlag, 
Berlin, 1984. 
19. R.P. Lippmann, "An Introduction to Computing with Neural Nets", IEEE 
AASP, Apri11987, pp. 4-22. 
20. S. Tomboulian, "A System for Routing Directed Graphs on SIMD Architec
tures", ICASE Report No. 87-14, NASA Langley Research Center, Hampton, 
VA. 
21. C.Y. Lee, "An algorithm for path connections and its applications", IRE 
Trans Elec Comput, Vol. EC-I0, Sept. 1961, pp. 346-365. 
22. E. F. Moore, "Shortest path through a maze", A nnals of Computation 
Laboratory, vol. 30. Cambridge, MA: Harvard Univ. Press, 1959, pp.285-292. 


