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Abstract

Recurrent neural networks (RNNs) are a widely used tool for modeling sequential
data, yet they are often treated as inscrutable black boxes. Given a trained recurrent
network, we would like to reverse engineer it–to obtain a quantitative, interpretable
description of how it solves a particular task. Even for simple tasks, a detailed
understanding of how recurrent networks work, or a prescription for how to develop
such an understanding, remains elusive. In this work, we use tools from dynam-
ical systems analysis to reverse engineer recurrent networks trained to perform
sentiment classification, a foundational natural language processing task. Given a
trained network, we find fixed points of the recurrent dynamics and linearize the
nonlinear system around these fixed points. Despite their theoretical capacity to
implement complex, high-dimensional computations, we find that trained networks
converge to highly interpretable, low-dimensional representations. In particular,
the topological structure of the fixed points and corresponding linearized dynamics
reveal an approximate line attractor within the RNN, which we can use to quanti-
tatively understand how the RNN solves the sentiment analysis task. Finally, we
find this mechanism present across RNN architectures (including LSTMs, GRUs,
and vanilla RNNs) trained on multiple datasets, suggesting that our findings are
not unique to a particular architecture or dataset. Overall, these results demonstrate
that surprisingly universal and human interpretable computations can arise across a
range of recurrent networks.

1 Introduction

Recurrent neural networks (RNNs) are a popular tool for sequence modelling tasks. These architec-
tures are thought to learn complex relationships in input sequences, and exploit this structure in a
nonlinear fashion. However, RNNs are typically viewed as black boxes, despite considerable interest
in better understanding how they function.

Here, we focus on studying how recurrent networks solve document-level sentiment analysis—a
simple, but longstanding benchmark task for language modeling [7, 19]. Simple models, such
as logistic regression trained on a bag-of-words representation, can achieve good performance in
this setting [17]. Nonetheless, baseline models without bi-gram features miss obviously important
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Figure 1: Example LSTM hidden state activity for a network trained on sentiment classification. Each
panel shows the evolution of the hidden state for all of the units in the network for positive (left) and
negative (right) example documents over the first 150 tokens. At a glance, the activation time series
for individual units appear inscrutable.

syntactic relations, such as negation clauses [18]. To capture complex structure in text, especially
over long distances, many recent works have investigated a wide variety of feed-forward and recurrent
neural network architectures for this task (for a review, see [19]).

We demonstrate that popular RNN architectures, despite having the capacity to implement high-
dimensional and nonlinear computations, in practice converge to low-dimensional representations
when trained on this task. Moreover, using analysis techniques from dynamical systems theory, we
show that locally linear approximations to the nonlinear RNN dynamics are highly interpretable.
In particular, they all involve approximate low-dimensional line attractor dynamics–a useful dy-
namical feature that can be implemented by linear dynamics and can used to store an analog value
[13]. Furthermore, we show that this mechanism is surprisingly consistent across a range of RNN
architectures. Taken together, these results demonstrate how a remarkably simple operation—linear
integration—arises as a universal mechanism in disparate, nonlinear recurrent architectures that solve
a real world task.

2 Related Work

Several studies have tried to interpret recurrent networks by visualizing the activity of individual
RNN units and memory gates during NLP tasks [5, 15]. While some individual RNN state variables
appear to encode semantically meaningful features, most units do not have clear interpretations. For
example, the hidden states of an LSTM appear extremely complex when performing a task (Fig.
1). Other work has suggested that network units with human interpretable behaviors (e.g. class
selectivity) are not more important for network performance [10], and thus our understanding of
RNN function may be misled by focusing only on single interpretable units. Instead, this work aims
to interpret the entire hidden state to infer computational mechanisms underlying trained RNNs.

Another line of work has developed quantitative methods to identify important words or phrases in
an input sequence that influenced the model’s ultimate prediction [8, 11]. These approaches can
identify interesting salient features in subsets of the inputs, but do not directly shed light into the
computational mechanism of RNNs.

3 Methods

3.1 Preliminaries

We denote the hidden state of a recurrent network at time t as a vector, ht. Similarly, the input to the
network at time t is given by a vector xt. We use F to denote a function that applies any recurrent
network update, i.e. ht+1 = F (ht,xt).

3.2 Training

We trained four RNN architectures–LSTM [4], GRU [1], Update Gate RNN (UGRNN) [2], and
standard (vanilla) RNNs–on binary sentiment classifcation tasks. We trained each network type on
each of three datasets: the IMDB movie review dataset, which contains 50,000 highly polarized
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Figure 2: LSTMs trained to identify the sentiment of Yelp reviews explore a low-dimensional volume
of state space. (a) PCA on LSTM hidden states - PCA applied to all hidden states visited during
1000 test examples for untrained (light gray) vs. trained (black) LSTMs. After training, most of
the variance in LSTM hidden unit activity is captured by a few dimensions. (b) RNN state space -
Projection of LSTM hidden unit activity onto the top two principal components (PCs). 2D histogram
shows density of visited states for test examples colored for negative (red) and positive (green)
reviews. Two example trajectories are shown for a document of each type (red and green solid
lines, respectively). The projection of the initial state (black dot) and readout vector (black arrows)
in this low-dimensional space are also shown. Dashed black line shows a readout value of 0. (c)
Approximate fixed points - Projection of approximate fixed points of the LSTM dynamics (see
Methods) onto the top PCs. The fixed points lie along a 1-D manifold (inset shows variance explained
by PCA on the approximate fixed points), parameterized by a coordinate θ (see Methods).

reviews [9]; the Yelp review dataset, which contained 500,000 user reviews [20]; and the Stanford
Sentiment Treebank, which contains 11,855 sentences taken from movie reviews [14]. For each
task and architecture, we analyzed the best performing networks, selected using a validation set (see
Appendix B for test accuracies of the best networks).

3.3 Fixed point analysis

We analyzed trained networks by linearizing the dynamics around approximate fixed points. Approxi-
mate fixed points are state vectors {h∗1,h∗2,h∗3, · · · } that do not change appreciably under the RNN
dynamics with zero inputs: h∗i ≈ F (h∗i ,x=0) [16]. Briefly, we find these fixed points numerically
by first defining a loss function q = 1

N ‖h−F (h,0)‖22, and then minimizing q with respect to hidden
states, h, using standard auto-differentiation methods [3]. We ran this optimization multiple times
starting from different initial values of h. These initial conditions were sampled randomly from the
distribution of state activations explored by the trained network, which was done to intentionally
sample states related to the operation of the RNN.

4 Results

For brevity, in what follows we explain our approach using the working example of the LSTM trained
on the Yelp dataset (Figs. 2-3). At the end of the results we show a summary figure across a few
more architectures and datasets (Fig. 6). We find similar results for all architectures and datasets, as
demonstrated by an exhaustive set of figures in the supplementary materials.

4.1 RNN dynamics are low-dimensional

As an initial exploratory analysis step, we performed principal components analysis (PCA) on the
RNN states concatenated across 1,000 test examples. The top 2-3 PCs explained ∼90% of the
variance in hidden state activity (Fig. 2a, black line). The distribution of hidden states visited
by untrained networks on the same set of examples was much higher dimensional (Fig. 2a, gray
line), suggesting that training the networks stretched the geometry of their representations along a
low-dimensional subspace.

We then visualized the RNN dynamics in this low-dimensional space by forming a 2D histogram of
the density of RNN states colored by the sentiment label (Fig. 2b), and visualized how RNN states
evolved within this low-dimensional space over a full sequence of text (Fig. 2b).
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Figure 3: Characterizing the top eigenmodes of each fixed point. (a) Same plot as in Fig. 2c (fixed
points are grey), with three example fixed points highlighted. (b) For each of these fixed points,
we compute the LSTM Jacobian (see Methods) and show the distribution of eigenvalues (colored
circles) in the complex plane (black line is the unit circle). (c-d) The time constants (τ in terms of #
of input tokens, see Appendix C) associated with the eigenvalues. (c) The time constant for the top
three modes for all fixed points as function of the position along the line attractor (parameterized
by a manifold coordinate, θ). (d) All time constants for all eigenvalues associated with the three
highlighted fixed points. The top eigenmode across fixed points has a time constant on the order of
hundreds to thousands of tokens.

We observed that the state vector incrementally moved from a central position towards one or another
end of the PC-plane, with the direction corresponding either to a positive or negative sentiment
prediction. Input words with positive valence (“amazing”, “great”, etc.) incremented the hidden state
towards a positive sentiment prediction, while words with negative valence (“bad”, “horrible”, etc.)
pushed the hidden state in the opposite direction. Neutral words and phrases did not typically exert
large effects on the RNN state vector.

These observations are reminiscent of line attractor dynamics. That is, the RNN state vector evolves
along a 1D manifold of marginally stable fixed points. Movement along the line is negligible whenever
non-informative inputs (i.e. neutral words) are input to the network, whereas when an informative
word or phrase (e.g. “delicious” or “mediocre”) is encountered, the state vector is pushed towards one
or the other end of the manifold. Thus, the model’s representation of positive and negative documents
gradually separates as evidence is incrementally accumulated.

The hypothesis that RNNs approximate line attractor dynamics makes four specific predictions, which
we investigate and confirm in subsequent sections. First, the fixed points form an approximately 1D
manifold that is aligned with the readout weights (Section 4.2). Second, all fixed points are attracting
and marginally stable. That is, in the absence of input (or, perhaps, if a string of neutral/uninformative
words are encountered) the RNN state should rapidly converge to the closest fixed point and then
should not change appreciably (Section 4.4). Third, locally around each fixed point, inputs represent-
ing positive vs. negative evidence should produce linearly separable effects on the RNN state vector
along some dimension (Section 4.5). Finally, these instantaneous effects should be integrated by the
recurrent dynamics along the direction of the 1D fixed point manifold (Section 4.5).

4.2 RNNs follow a 1D manifold of stable fixed points

The line attractor hypothesis predicts that RNN state vector should rapidly approach a fixed point if
no input is delivered to the network. To test this, we initialized the RNN to a random state (chosen
uniformly from the distribution of states observed on the test set) and simulated the RNN without any
input. In all cases, the normalized velocity of the state vector (‖ht+1 − ht‖/‖ht‖) approached zero
within a few steps, and often the initial velocity was small. From this we conclude that the RNN is
very often in close proximity to a fixed point during the task.

We numerically identified the location of ∼500 RNN fixed points using previously established
methods [16, 3]. Briefly, we minimized the quantity q = 1

N ‖h− F (h,0)‖22 over the RNN hidden
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state vector, h, from many initial conditions drawn to match the distribution of hidden states during
training. Critical points of this loss function satisfying q < 10−8 were consider fixed points (similar
results were observed for different choices of this threshold). For each architecture, we found ∼500
(approximate) fixed points.

We then projected these fixed points into the same low-dimensional space used in Fig. 2b. Although
the PCA projection was fit to the RNN hidden states, and not the fixed points, a very high percentage
of variance in fixed points was captured by this projection (Fig. 2c, inset), suggesting that the RNN
states remain close to the manifold of fixed points. We call the vector that describes the main axis
of variation of the 1D manifold m. Consistent with the line attractor hypothesis, the fixed points
appeared to be spread along a 1D curve when visualized in PC space, and furthermore the principal
direction of this curve was aligned with the readout weights (Fig. 2c).

We further verified that this low-dimensional approximation was accurate by using locally linear
embedding (LLE) [12] to parameterize a 1D manifold of fixed points in the raw, high-dimensional
data. This provided a scalar coordinate, θi ∈ [−1, 1], for each fixed point, which was well-matched
to the position of the fixed point manifold in PC space (coloring of points in Fig. 2c).

4.3 Linear approximations of RNN dynamics

We next aimed to demonstrate that the identified fixed points were marginally stable, and thus could be
used to preserve accumulated information from the inputs. To do this, we used a standard linearization
procedure [6] to obtain an approximate, but highly interpretable, description of the RNN dynamics
near the fixed point manifold. Briefly, given the last state ht−1 and the current input xt, the approach
is to locally approximate the update rule with a first-order Taylor expansion:

ht = F (h∗ + ∆ht−1,x
∗ + ∆xt)

≈ F (h∗,x∗) + Jrec∆ht−1 + Jinp∆xt (1)

where ∆ht−1 = ht−1−h∗ and ∆xt = xt−x∗, and {Jrec,Jinp} are Jacobian matrices of the system:
J rec
ij (h∗,x∗) = ∂F (h∗,x∗)i

∂h∗
j

and J inp
ij (h∗,x∗) = ∂F (h∗,x∗)i

∂x∗
j

.

We choose h∗ to be a numerically identified fixed point and x∗ = 02, thus we have F (h∗,x∗) ≈ h∗

and ∆xt = xt. Under this choice, equation (1) reduces to a discrete-time linear dynamical system:

∆ht = Jrec∆ht−1 + Jinpxt. (2)

It is important to note that both Jacobians depend on which fixed point we choose to linearize around,
and should thus be thought of as functions of h∗; for notational simplicity we do not denote this
dependence explicitly.

By reducing the nonlinear RNN to a linear system, we can analytically estimate the network’s
response to a sequence of T inputs. In this approximation, the effect of each input xt is decoupled
from all others; that is, the final state is given by the sum of all individual effects3.

We can restrict our focus to the effect of a single input, xt. Let k = T − t be the number of time
steps between xt and the end of the document. The total effect of xt on the final RNN state is
(Jrec)

k
Jinpxt. After substituting the eigendecomposition Jrec = RΛL for a non-normal matrix, this

becomes:

RΛkLJinpxt =

N∑
a=1

λkara`
>
a Jinpxt, (3)

where L = R−1, the columns of R (denoted ra) contain the right eigenvectors of Jrec, the rows
of L (denoted `>a ) contain the left eigenvectors of Jrec, and Λ is a diagonal matrix containing
complex-valued eigenvalues, λ1 > λ2 > . . . > λN , which are sorted based on their magnitude.

2We also tried linearizing around the average embedding over all words; this did not change the results. The
average embedding is very close to the zeros vector (the norm of the difference between the two is less than
8 × 10−3), so it is not surprising that using that as the linearization point yields similar results.

3We consider the case where the network has closely converged to a fixed point, so that h0 = h∗ and thus
∆h0 = 0.
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Figure 4: Effect of different word inputs on the LSTM state vector. (a) Effect of word inputs, Jinpx,
for positive, negative, and neutral words (green, red, cyan dots). The green and red arrows point to the
center of mass for the positive and negative words, respectively. Blue arrows denote `1, the top left
eigenvector. The PCA projection is the same as Fig. 2c, but centered around each fixed point. Each
plot denotes a separate fixed point (labeled in panel b). (b) Same plot as in Fig. 2c, with the three
example fixed points in (a) highlighted (the rest of the approximate fixed points are shown in grey).
Blue arrows denote r1, the top right eigenvector. In all cases r1 is aligned with the orientation of the
manifold, m, consistent with an approximate line attractor. (c) Average of the projection of inputs
with the left eigenvector (`>1 Jinpx) over 100 positive (green), negative (red), or neutral (cyan) words.
Histogram displays the distribution of this input projection over all fixed points. (d) Distribution of
r>1 m (overlap of the top right eigenvector with the fixed point manifold) over all fixed points. Null
distribution consists of randomly generated unit vectors of the same dimension as the hidden state.

4.4 An analysis of integration eigenmodes.

Each mode of the system either reduces to zero or diverges exponentially fast, with a time constant
given by: τa =

∣∣∣ 1
log(|λa|)

∣∣∣ (see Appendix C for derivation). This time constant has units of tokens
(or, roughly, words) and yields an interpretable number for the effective memory of the system. In
practice we find, with high consistency, that nearly all eigenmodes are stable and only a small number
cluster around |λa| ≈ 1.

Fig. 3 plots the eigenvalues and associated time constants and shows the distribution of all eigenvalues
at three representative fixed points along the fixed point manifold (Fig. 3a). In Fig. 3c, we plot the
decay time constant of the top three modes; the slowest decaying mode persists after ∼1000 time
steps, while the next two modes persist after ∼100 time steps, with lower modes decaying even faster.
Since the average review length for the Yelp dataset is ∼175 words, only a small number of modes
can retain information from the beginning of the document.

Overall, these eigenvalue spectra are consistent with our observation that RNN states only explore a
low-dimensional subspace when performing sentiment classification. RNN activity along the majority
of dimensions is associated with fast time constants and is therefore quickly forgotten. While multiple
eigenmodes likely contribute to the performance of the network, we restrict this initial study to the
slowest mode, for which λ1 ≈ 1.

4.5 Left and right eigenvectors

Restricting our focus to the top eigenmode for simplicity (there may be a few slow modes of
integration), the effect of a single input, xt, on the network activity (eq. 3) becomes: r1`

>
1 Jinpx. We

have dropped the dependence on t since λ1 ≈ 1, so the effect of x is largely insensitive to the exact
time it was input to system. Using this expression, we separately analyzed the effects of specific
words with positive, negative and neutral valences. We defined positive, negative, and neutral words
based on the magnitude and sign of the logistic regression coefficients of a bag-of-words classifier.
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Figure 5: Linearized LSTM dynamics display low fractional error. (a) At every step along a trajectory,
we compute the next state using either the full nonlinear system (solid, black) or the linearized system
(dashed, red). Inset shows a zoomed in version of the dynamics. (b) Histogram of fractional error of
the linearized system over many test examples, evaluated in the high-dimensional state space.

We first examined the term Jinpx for various choices of x (i.e. various word tokens). This quantity
represents the instantaneous linear effect of x on the RNN state vector. We projected the resulting
vectors onto the same low-dimensional subspace shown in Fig. 2c. We see that positive and negative
valence words push the hidden state in opposite directions. Neutral words, in contrast, exert much
smaller effects on the RNN state (Fig 4).

While Jinpx represents the instantaneous effect of a word, only the features of this input that overlap
with the top few eigenmodes are reliably remembered by the network. The scalar quantity `>1 Jinpx,
which we call the input projection, captures the magnitude of change induced by x along the
eigenmode associated with the longest timescale. Again we observe that the valence of x strongly
correlates with this quantity: neutral words have an input projection near zero while positive and
negative words produced larger magnitude responses of opposite sign. Furthermore, this is reliably
observed across all fixed points. Fig. 4c shows the average input projection for positive, negative, and
neutral words; the histogram summarizes these effects across all fixed points along the line attractor.

Finally, if the input projection onto the top eigenmode is non-negligible, then the right eigenvector
r1 (which is normalized to unit length) represents the direction along which x is integrated. If the
RNN implements an approximate line attractor, then r1 (and potentially other slow modes) should
align with the principal direction of the manifold of fixed points, m. In essence, this prediction states
that an informative input pushes the current RNN state along the fixed point manifold and towards a
neighboring fixed point, with the direction of this movement determined by word or phrase valence.
We indeed observe a high degree of overlap between r1 and m both visually in PC space (Fig. 4b)
and quantitatively across all fixed points (Fig. 4d).

4.6 Linearized dynamics approximate the nonlinear system

To verify that the linearized dynamics (2) well approximate the nonlinear system, we compared hidden
state trajectories of the full, nonlinear RNN to the linearized dynamics. That is, at each step, we
computed the next hidden state using the nonlinear LSTM update equations (hLSTM

t+1 = F (ht,xt)), and
the linear approximation of the dynamics at the nearest fixed point (hlin

t+1 = h∗+Jrec (h∗) (ht − h∗)+

Jinp (h∗) xt). Fig. 5a shows the true, nonlinear trajectory (solid black line) as well as the linear
approximations at every point along the trajectory (red dashed line). To summarize the error across
many examples, we computed the relative error ‖hLSTM

t+1 − hlin
t+1‖2/‖hLSTM

t+1 ‖2. Fig. 5b shows that
this error is small (around 10%) across many test examples.

Note that this error is the single-step error, computed by running either the nonlinear or linear
dynamics forward for one time step. If we run the dynamics for many time steps, we find that small
errors in the linearized system accumulate thus causing the trajectories to diverge. This suggests that
we cannot, in practice, replace the full nonlinear LSTM with a single linearized version.

4.7 Universal mechanisms across architectures and datasets

Empirically, we investigated whether the mechanisms identified in the LSTM (line attractor dynamics)
were present not only for other network architectures but also for networks trained on other datasets

7



Figure 6: Universal mechanisms across architectures and datasets (see Appendix A for all other
architecture-dataset combinations). Top row: comparison of left eigenvector (blue) against instan-
taneous effect of word input Jinpx by valence (green and red dots are positive and negative words,
compare to Fig. 4a) for an example fixed point. Second row: Histogram of input projections summa-
rizing the effect of input across fixed points (average of `>1 Jinpx, compare to Fig. 4c). Third row:
Example fixed point (blue) shown on top of the manifold of fixed points (gray) projected into the
principal components of hidden state activity, along with the corresponding top right eigenvector
(compare to Fig. 4b). Bottom row: Distribution of projections of the top right eigenvector onto the
manifold across fixed points (distribution of r>1 m, compare to Fig. 4d).

used for sentiment classification. Remarkably, we see a surprising near-universality across networks
(but see Supp. Mat. for another solution for the VRNN). Fig. 6 shows, for different architectures and
datasets, the correlation of the the top left eigenvectors with the instantaneous input for a given fixed
point (first row), as well as a histogram over the same quantity over fixed points (second row). We
observe the same configuration of a line attractor of approximate fixed points, and show an example
fixed point and right eigenvector highlighted (third row) along with a summary of the projection of
the top right eigenvector along the manifold across fixed points (bottom row). We see that regardless
of architecture or dataset, each network approximately solves the task using the same mechanism.

5 Discussion

In this work we applied dynamical systems analysis to understand how RNNs solve sentiment analysis.
We found a simple mechanism—integration along a line attractor—present in multiple architectures
trained to different sentiment analysis tasks. Overall, this work provides preliminary, but optimistic,
evidence that different, highly intricate network models can converge to similar solutions that may be
reduced and understood by human practitioners.

In summary, we found that in nearly all cases the key activity performed by the RNN for sentiment
analysis is simply counting the number of positive and negative words used. More precisely, a slow
mode of a local linear system aligns its left eigenvector with the current effective input, which itself
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nicely separates positive and negative word tokens. The associated right eigenvector then represents
that input in a direction aligned to a line attractor, which in turn is aligned to the readout vector. As
the RNN iterates over a document, integration of negative and positive words moves the system state
along this line attractor, corresponding to accumulation of evidence by the RNN towards a prediction.

Such a mechanism is consistent with a solution that does not make use of word order when making a
decision. As such, it is likely that we have not understood all the dynamics relevant in the computation
of sentiment analysis. For example, we speculate there may be some yet unknown mechanism that
detects simple bi-gram negations of one word by another, e.g. “not bad,” since the gated RNNs
performed a few percentage points better than the bag-of-words model. Nonetheless, it appears that
approximate line attractor dynamics represent a fundamental computational mechanism in these
RNNs, which can be built upon by future investigations.

When we compare the overall classification accuracy of the Jacobian linearized version of the LSTM
with the full nonlinear LSTM, we find that the linearized version is much worse, presumably due to
small errors in the linear approximation that accrue as the network processes a document. Note that
if we directly train a linear model (as opposed to linearizing a nonlinear model), the performance
is quite high (only around 3% worse than the LSTM), which suggests that the error of the Jacobian
linearized model has to do with errors in the approximation, not from having less expressive power.

We showed that similar dynamical features occur in 4 different architectures, the LSTM, GRU,
UGRNN and vanilla RNNs (Fig. 6 and Supp. Mat.) and across three datasets. These rather different
architectures all implemented the solution to sentiment analysis in a highly similar way. This hints at
a surprising notion of universality of mechanism in disparate RNN architectures.

While our results pertain to a specific task, sentiment analysis is nevertheless representative of a
larger set of modeling tasks that require integrating both relevant and irrelevant information over long
sequences of symbols. Thus, it is possible that the uncovered mechanisms—namely, approximate
line attractor dynamics—will arise in other practical settings, though perhaps employed in different
ways on a per-task basis.
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