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Abstract

With the prevalence of machine learning in high-stakes applications, especially the
ones regulated by anti-discrimination laws or societal norms, it is crucial to ensure
that the predictive models do not propagate any existing bias or discrimination. Due
to the ability of deep neural nets to learn rich representations, recent advances in
algorithmic fairness have focused on learning fair representations with adversarial
techniques to reduce bias in data while preserving utility simultaneously. In this
paper, through the lens of information theory, we provide the first result that
quantitatively characterizes the tradeoff between demographic parity and the joint
utility across different population groups. Specifically, when the base rates differ
between groups, we show that any method aiming to learn fair representations
admits an information-theoretic lower bound on the joint error across these groups.
To complement our negative results, we also prove that if the optimal decision
functions across different groups are close, then learning fair representations leads
to an alternative notion of fairness, known as the accuracy parity, which states that
the error rates are close between groups. Finally, our theoretical findings are also
confirmed empirically on real-world datasets.

1 Introduction

With the prevalence of machine learning applications in high-stakes domains, e.g., criminal judgement,
medical testing, online advertising, etc., it is crucial to ensure that the automated decision making
systems do not propagate existing bias or discrimination that might exist in historical data [3, 4, 28].
Among many recent proposals for achieving different notions of algorithmic fairness [10, 14, 31–33],
learning fair representations has received increasing attention due to recent advances in learning
rich representations with deep neural networks [5, 11, 24, 26, 30, 34]. In fact, a line of work has
proposed to learn group-invariant representations with adversarial learning techniques in order to
achieve statistical parity, also known as the demographic parity in the literature. This line of work
dates at least back to Zemel et al. [33] where the authors proposed to learn predictive models that
are independent of the group membership attribute. At a high level, the underlying idea is that if
representations of instances from different groups are similar to each other, then any predictive model
on top of them will certainly make decisions independent of group membership.

On the other hand, it has long been observed that there is an underlying tradeoff between utility and
demographic parity:

“All methods have in common that to some extent accuracy must be traded-off for
lowering the dependency.” [6]

In particular, it is easy to see that in an extreme case where the group membership coincides with
the target task, a call for exact demographic parity will inevitably remove the perfect predictor [14].
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Empirically, it has also been observed that a tradeoff exists between accuracy and fairness in binary
classification [38]. Clearly, methods based on learning fair representations are also bound by such
inherent tradeoff between utility and fairness. But how does the fairness constraint trade for utility?
Will learning fair representations help to achieve other notions of fairness besides the demographic
parity? If yes, what is the fundamental limit of utility that we can hope to achieve under such
constraint?

To answer the above questions, through the lens of information theory, in this paper we provide the
first result that quantitatively characterizes the tradeoff between demographic parity and the joint
utility across different population groups. Specifically, when the base rates differ between groups,
we provide a tight information-theoretic lower bound on the joint error across these groups. Our
lower bound is algorithm-independent so it holds for all methods aiming to learn fair representations.
When only approximate demographic parity is achieved, we also present a family of lower bounds to
quantify the tradeoff of utility introduced by such approximate constraint. As a side contribution, our
proof technique is simple but general, and we expect it to have broader applications in other learning
problems using adversarial techniques, e.g., unsupervised domain adaptation [12, 36], privacy-
preservation under attribute inference attacks [13, 35] and multilingual machine translation [16].

To complement our negative results, we show that if the optimal decision functions across different
groups are close, then learning fair representations helps to achieve an alternative notion of fairness,
i.e., the accuracy parity, which states that the error rates are close between groups. Empirically,
we conduct experiments on a real-world dataset that corroborate both our positive and negative
results. We believe our theoretical insights contribute to better understanding of the tradeoff between
utility and different notions of fairness, and they are also helpful in guiding the future design of
representation learning algorithms to achieve algorithmic fairness.

2 Preliminary

We first introduce the notation used throughout the paper and formally describe the problem setup.
We then briefly discuss some information-theoretic concepts that will be used in our analysis.

Notation We use X ⊆ Rd and Y = {0, 1} to denote the input and output space. Accordingly, we
use X and Y to denote the random variables which take values in X and Y , respectively. Lower case
letters x and y are used to denote the instantiation of X and Y . To simplify the presentation, we
use A ∈ {0, 1} as the sensitive attribute, e.g., race, gender, etc. 2 Let H be the hypothesis class of
classifiers. In other words, for h ∈ H, h : X → Y is the predictor that outputs a prediction. Note that
even if the predictor does not explicitly take the sensitive attribute A as input, this fairness through
blindness mechanism can still be biased due to the potential correlations between X and A. In this
work we study the stochastic setting where there is a joint distribution D over X,Y and A from
which the data are sampled. To keep the notation consistent, for a ∈ {0, 1}, we use Da to mean
the conditional distribution of D given A = a. For an event E, D(E) denotes the probability of E
under D. In particular, in the literature of fair machine learning, we call D(Y = 1) the base rate
of distribution D and we use ∆BR(D,D′) := |D(Y = 1) − D′(Y = 1)| to denote the difference
of the base rates between two distributions D and D′ over the same sample space. Given a feature
transformation function g : X → Z that maps instances from the input space X to feature space Z ,
we define g]D := D ◦ g−1 to be the induced (pushforward) distribution of D under g, i.e., for any
event E′ ⊆ Z , g]D(E′) := D(g−1(E′)) = D({x ∈ X | g(x) ∈ E′}).

Problem Setup Given a joint distribution D, the error of a predictor h under D is defined as
ErrD(h) := ED[|Y − h(X)|]. Note that for binary classification problems, when h(X) ∈ {0, 1},
ErrD(h) reduces to the true error rate of binary classification. To make the notation more compact,
we may drop the subscript D when it is clear from the context. In this work we focus on group
fairness where the group membership is given by the sensitive attribute A. Even in this context there
are many possible definitions of fairness [27], and in what follows we provide a brief review of the
ones that are mostly relevant to this work.

Definition 2.1 (Demographic Parity). Given a joint distribution D, a classifier Ŷ satisfies demo-
graphic parity if Ŷ is independent of A.

2Our main results could also be straightforwardly extended to the setting where A is a categorical variable.
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Demographic parity reduces to the requirement thatD0(Ŷ = 1) = D1(Ŷ = 1), i.e., positive outcome
is given to the two groups at the same rate. When exact equality does not hold, we use the absolute
difference between them as an approximate measure:

Definition 2.2 (DP Gap). Given a joint distribution D, the demographic parity gap of a classifier Ŷ
is ∆DP(Ŷ ) := |D0(Ŷ = 1)−D1(Ŷ = 1)|.

Demographic parity is also known as statistical parity, and it has been adopted as definition of fairness
in a series of work [6, 11, 15, 17, 18, 24, 26, 33]. However, as we shall quantify precisely in Section 3,
demographic parity may cripple the utility that we hope to achieve, especially in the common scenario
where the base rates differ between two groups, e.g., D0(Y = 1) 6= D1(Y = 1) [14]. In light of this,
an alternative definition is accuracy parity:
Definition 2.3 (Accuracy Parity). Given a joint distribution D, a classifier h satisfies accuracy parity
if ErrD0

(h) = ErrD1
(h).

In the literature, a break of accuracy parity is also known as disparate mistreatment [32]. Again, when
h is a deterministic binary classifier, accuracy parity reduces to D0(h(X) = Y ) = D1(h(X) = Y ).
Different from demographic parity, the definition of accuracy parity does not eliminate the perfect
predictor when Y = A when the base rates differ between two groups. When costs of different error
types matter, more refined definitions exist:
Definition 2.4 (Positive Rate Parity). Given a joint distributionD, a deterministic classifier h satisfies
positive rate parity if D0(h(X) = 1 | Y = y) = D1(h(X) = 1 | Y = y), ∀y ∈ {0, 1}.

Positive rate parity is also known as equalized odds [14], which essentially requires equal true positive
and false positive rates between different groups. Furthermore, Hardt et al. [14] also defined true
positive parity, or equal opportunity, to be D0(h(X) = 1 | Y = 1) = D1(h(X) = 1 | Y = 1) when
positive outcome is desirable. Last but not least, predictive rate parity, also known as test fairness [7],
asks for equal chance of positive outcomes across groups given predictions:
Definition 2.5 (Predictive Rate Parity). Given a joint distribution D, a probabilistic classifier h
satisfies predictive rate parity if D0(Y = 1 | h(X) = c) = D1(Y = 1 | h(X) = c), ∀c ∈ [0, 1].

When h is a deterministic binary classifier that only takes value in {0, 1}, Chouldechova [7] showed
an intrinsic tradeoff between predictive rate parity and positive rate parity:
Theorem 2.1 (Chouldechova [7]). Assume D0(Y = 1) 6= D1(Y = 1), then for any deterministic
classifier h : X → {0, 1} that is not perfect, i.e., h(X) 6= Y , positive rate parity and predictive rate
parity cannot hold simultaneously.

Similar tradeoff result for probabilistic classifier has also been observed by Kleinberg et al. [21],
where the authors showed that for any non-perfect predictors, calibration and positive rate parity
cannot be achieved simultaneously if the base rates are different across groups. Here a classifier h is
said to be calibrated if D(Y = 1 | h(X) = c) = c,∀c ∈ [0, 1], i.e., if we look at the set of data that
receive a predicted probability of c by h, we would like c-fraction of them to be positive instances
according to Y [29].

f -divergence Introduced by Ali and Silvey [2] and Csiszár [8, 9], f -divergence, also known as the
Ali-Silvey distance, is a general class of statistical divergences to measure the difference between
two probability distributions P and Q over the same measurable space.
Definition 2.6 (f -divergence). Let P andQ be two probability distributions over the same space and
assume P is absolutely continuous w.r.t. Q (P � Q). Then for any convex function f : (0,∞)→ R
that is strictly convex at 1 and f(1) = 0, the f -divergence of Q from P is defined as

Df (P || Q) := EQ
[
f

(
dP
dQ

)]
. (1)

The function f is called the generator function of Df (· || ·).

Different choices of the generator function f recover popular statistical divergence as special cases,
e.g., the KL-divergence. From Jensen’s inequality it is easy to verify that Df (P || Q) ≥ 0 and
Df (P || Q) = 0 iff P = Q almost surely. Note that f -divergence does not necessarily leads to
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a distance metric, and it is not symmetric in general, i.e., Df (P || Q) 6= Df (Q || P) provided
that P � Q and Q � P . We list some common choices of the generator function f and their
corresponding properties in Table 1. Notably, Khosravifard et al. [20] proved that total variation is
the only f -divergence that serves as a metric, i.e., satisfying the triangle inequality.

Table 1: List of different f -divergences and their corresponding properties. DKL(P || Q) denotes the
KL-divergence of Q from P andM := (P +Q)/2 is the average distribution of P and Q. Symm.
stands for Symmetric and Tri. stands for Triangle Inequality.

Name Df (P || Q) Generator f(t) Symm. Tri.

Kullback-Leibler DKL(P || Q) t log t 7 7
Reverse-KL DKL(Q || P) − log t 7 7
Jensen-Shannon DJS(P,Q) := 1

2
(DKL(P||M) +DKL(Q||M)) t log t− (t+ 1) log( t+1

2
) 3 7

Squared Hellinger H2(P,Q) := 1
2

∫
(
√
dP −

√
dQ)2 (1−

√
t)2/2 3 7

Total Variation dTV(P,Q) := supE |P(E)−Q(E)| |t− 1|/2 3 3

3 Main Results

As we briefly mentioned in Section 2, it is impossible to have imperfect predictor that is both
calibrated and preserves positive rate parity when the base rates differ between two groups. Similar
impossibility result also holds between positive rate parity and predictive rate parity. On the other
hand, while it has long been observed that demographic parity may eliminate perfect predictor [14],
and previous work has empirically verified that tradeoff exists between accuracy and demographic
parity [6, 17, 38] on various datasets, so far a quantitative characterization on the exact tradeoff
between accuracy and various notions of parity is still missing. In what follows we shall prove a
family of information theoretic lower bounds on the accuracy that hold for all algorithms.

3.1 Tradeoff between Fairness and Utility

Essentially, every prediction function induces a Markov chain: X
g−→ Z

h−→ Ŷ , where g is the
feature transformation, h is the classifier on feature space, Z is the feature and Ŷ is the predicted target
variable by h ◦ g. Note that simple models, e.g., linear classifiers, are also included by specifying
g to be the identity map. With this notation, we first state the following theorem that quantifies an
inherent tradeoff between fairness and utility.

Theorem 3.1. Let Ŷ = h(g(X)) be the predictor. If Ŷ satisfies demographic parity, then ErrD0
(h ◦

g) + ErrD1
(h ◦ g) ≥ ∆BR(D0,D1).

Remark First of all, ∆BR(D0,D1) is the difference of base rates across groups, and it achieves
its maximum value of 1 iff Y = A almost surely, i.e., Y indicates group membership. On the other
hand, if Y is independent of A, then ∆BR(D0,D1) = 0 so the lower bound does not make any
constraint on the joint error. Second, Theorem 3.1 applies to all possible feature transformation g
and predictor h. In particular, if we choose g to be the identity map, then Theorem 3.1 says that
when the base rates differ, no algorithm can achieve a small joint error on both groups, and it also
recovers the previous observation that demographic parity can eliminate the perfect predictor [14].
Third, the lower bound in Theorem 3.1 is insensitive to the marginal distribution of A, i.e., it treats
the errors from both groups equally. As a comparison, let α := D(A = 1), then ErrD(h ◦ g) =
(1 − α)ErrD0

(h ◦ g) + αErrD1
(h ◦ g). In this case ErrD(h ◦ g) could still be small even if the

minority group suffers a large error.

Furthermore, by the pigeonhole principle, the following corollary holds:

Corollary 3.1. If the predictor Ŷ = h(g(X)) satisfies demographic parity, then max{ErrD0
(h ◦

g),ErrD1
(h ◦ g)} ≥ ∆BR(D0,D1)/2.

In words, this means that for fair predictors in the demographic parity sense, at least one of the
subgroups has to incur an error of at least ∆BR(D0,D1)/2 which could be large in settings like
criminal justice where ∆BR(D0,D1) is large.
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Before we give the proof, we first present a useful lemma that lower bounds the prediction error by
the total variation distance.
Lemma 3.1. Let Ŷ = h(g(X)) be the predictor, then for a ∈ {0, 1}, dTV(Da(Y ),Da(Ŷ )) ≤
ErrDa

(h ◦ g).

Proof. For a ∈ {0, 1}, we have:

dTV(Da(Y ),Da(Ŷ )) = |Da(Y = 1)−Da(h(g(X)) = 1)| = |EDa [Y ]− EDa [h(g(X))]|
≤ EDa

[|Y − h(g(X))|] = ErrDa
(h ◦ g).

�
Now we are ready to prove Theorem 3.1:

Proof of Theorem 3.1. First of all, we show that if Ŷ = h(g(X)) satisfies demographic parity, then:

dTV(D0(Ŷ ),D1(Ŷ )) = max
{
|D0(Ŷ = 0)−D1(Ŷ = 0)|, |D0(Ŷ = 1)−D1(Ŷ = 1)|

}
= |D0(Ŷ = 1)−D1(Ŷ = 1)|
= |D(Ŷ = 1 | A = 0)−D(Ŷ = 1 | A = 1)| = 0,

where the last equality follows from the definition of demographic parity. Now from Table 1, dTV(·, ·)
is symmetric and satisfies the triangle inequality, we have:

dTV(D0(Y ),D1(Y )) ≤ dTV(D0(Y ),D0(Ŷ )) + dTV(D0(Ŷ ),D1(Ŷ )) + dTV(D1(Ŷ ),D1(Y ))

= dTV(D0(Y ),D0(Ŷ )) + dTV(D1(Ŷ ),D1(Y )). (2)

The last step is to bound dTV(Da(Y ),Da(Ŷ )) in terms of ErrDa
(h ◦ g) for a ∈ {0, 1} using

Lemma 3.1:

dTV(D0(Y ),D0(Ŷ )) ≤ ErrD0
(h ◦ g), dTV(D1(Y ),D1(Ŷ )) ≤ ErrD1

(h ◦ g).

Combining the above two inequalities and (2) completes the proof. �

It is not hard to show that our lower bound in Theorem 3.1 is tight. To see this, consider the
case A = Y , where the lower bound achieves its maximum value of 1. Now consider a constant
predictor Ŷ ≡ 1 or Ŷ ≡ 0, which clearly satisfies demographic parity by definition. But in this
case either ErrD0(h ◦ g) = 1,ErrD1(h ◦ g) = 0 or ErrD0(h ◦ g) = 0,ErrD1(h ◦ g) = 1, hence
ErrD0(h ◦ g) + ErrD1(h ◦ g) ≡ 1, achieving the lower bound.

To conclude this section, we point out that the choice of total variation in the lower bound is not
unique. As we will see shortly in Section 3.2, similar lower bounds could be attained using specific
choices of the general f -divergence with some desired properties.

3.2 Tradeoff in Fair Representation Learning

In the last section we show that there is an inherent tradeoff between fairness and utility when a
predictor exactly satisfies demographic parity. In practice we may not be able to achieve demographic
parity exactly. Instead, most algorithms [1, 5, 11, 24] build an adversarial discriminator that takes as
input the feature vector Z = g(X), and the goal is to learn fair representations such that it is hard for
the adversarial discriminator to infer the group membership from Z. In this sense due to the limit on
the capacity of the adversarial discriminator, only approximate demographic parity can be achieved
in the equilibrium. Hence it is natural to ask what is the tradeoff between fair representations and
accuracy in this scenario? In this section we shall answer this question by generalizing our previous
analysis with f -divergence to prove a family of lower bounds on the joint target prediction error.
Our results also show how approximate DP helps to reconcile but not remove the tradeoff between
fairness and utility. Before we state and prove the main results in this section, we first introduce the
following lemma by Liese and Vajda [22] as a generalization of the data processing inequality for
f -divergence:
Lemma 3.2 (Liese and Vajda [22]). Let µ(Z) be the space of all probability distributions over Z .
Then for any f -divergence Df (· || ·), any stochastic kernel κ : X → µ(Z), and any distributions P
and Q over X , Df (κP || κQ) ≤ Df (P || Q).
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Roughly speaking, Lemma 3.2 says that data processing cannot increase discriminating information.
Define dJS(P,Q) :=

√
DJS(P,Q) and H(P,Q) :=

√
H2(P,Q). It is well-known in information

theory that both dJS(·, ·) and H(·, ·) form a bounded distance metric over the space of probability
distributions. Realize that dTV(·, ·), H2(·, ·) and DJS(·, ·) are all f -divergence. The following
corollary holds:
Corollary 3.2. Let h : Z → Y be any hypothesis, and g]Da be the pushforward distribution of Da

by g, ∀a ∈ {0, 1}. Let Ŷ = h(g(X)) be the predictor, then all the following inequalities hold:

1. dTV(D0(Ŷ ),D1(Ŷ )) ≤ dTV(g]D0, g]D1)

2. H(D0(Ŷ ),D1(Ŷ )) ≤ H(g]D0, g]D1)

3. dJS(D0(Ŷ ),D1(Ŷ )) ≤ dJS(g]D0, g]D1)

Now we are ready to present the following main theorem of this section:

Theorem 3.2. Let Ŷ = h(g(X)) be the predictor. Assume dJS(g]D0, g]D1) ≤ dJS(D0(Y ),D1(Y ))
and H(g]D0, g]D1) ≤ H(D0(Y ),D1(Y )), then the following three inequalities hold:

1. Total variation lower bound:

ErrD0(h ◦ g) + ErrD1(h ◦ g) ≥ dTV(D0(Y ),D1(Y ))− dTV(g]D0, g]D1).

2. Jensen-Shannon lower bound:

ErrD0
(h ◦ g) + ErrD1

(h ◦ g) ≥
(
dJS(D0(Y ),D1(Y ))− dJS(g]D0, g]D1)

)2
/2.

3. Hellinger lower bound:

ErrD0
(h ◦ g) + ErrD1

(h ◦ g) ≥
(
H(D0(Y ),D1(Y ))−H(g]D0, g]D1)

)2
/2.

Remark All the three lower bounds in Theorem 3.2 imply a tradeoff between the joint error across
demographic subgroups and learning group-invariant feature representations. In a nutshell:

For fair representations, it is not possible to construct a predictor that simultane-
ously minimizes the errors on both demographic subgroups.

When g]D0 = g]D1, which also implies D0(Ŷ ) = D1(Ŷ ), all three lower bounds get larger, in this
case we have

max

{
dTV(D0(Y ),D1(Y )),

1

2
d2JS(D0(Y ),D1(Y )),

1

2
H2(D0(Y ),D1(Y ))

}
= dTV(D0(Y ),D1(Y ))

= ∆BR(D0,D1),

and this reduces to Theorem 3.1. Now we give a sketch of the proof for Theorem 3.2:

Proof Sketch of Theorem 3.2. We prove the three inequalities respectively. The total variation lower
bound follows the same idea as the proof of Theorem 3.1 and the inequality dTV(D0(Ŷ ),D1(Ŷ )) ≤
dTV(g]D0, g]D1) from Corollary 3.2. To prove the Jensen-Shannon lower bound, realize that
dJS(·, ·) is a distance metric over probability distributions. Combining with the inequality
dJS(D0(Ŷ ),D1(Ŷ )) ≤ dJS(g]D0, g]D1) from Corollary 3.2, we have:

dJS(D0(Y ),D1(Y )) ≤ dJS(D0(Y ),D0(Ŷ )) + dJS(g]D0, g]D1) + dJS(D1(Ŷ ),D1(Y )).

Now by Lin’s lemma [23, Theorem 3], for any two distributions P and Q, we have d2JS(P,Q) ≤
dTV(P,Q). Combine Lin’s lemma with Lemma 3.1, we get the following lower bound:√

ErrD0
(h ◦ g) +

√
ErrD1

(h ◦ g) ≥ dJS(D0(Y ),D1(Y ))− dJS(g]D0, g]D1).

Apply the AM-GM inequality, we can further bound the L.H.S. by√
2
(
ErrD0

(h ◦ g) + ErrD1
(h ◦ g)

)
≥
√

ErrD0
(h ◦ g) +

√
ErrD1

(h ◦ g).

Under the assumption that dJS(g]D0, g]D1) ≤ dJS(D0(Y ),D1(Y )), taking a square at both sides
then completes the proof for the second inequality. The proof for Hellinger’s lower bound follows
exactly as the one for Jensen-Shannon’s lower bound, except that instead of Lin’s lemma, we need to
use the fact that H2(P,Q) ≤ dTV(P,Q) ≤

√
2H(P,Q), ∀P,Q. �
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As a simple corollary of Theorem 3.2, the following result shows how approximate DP (in terms of
the DP gap) helps to reconcile the tradeoff between fairness and utility:

Corollary 3.3. Let Ŷ = h(g(X)) be the predictor, then ErrD0
(h ◦ g) + ErrD1

(h ◦ g) ≥
∆BR(D0,D1)−∆DP(Ŷ ).

In a sense Corollary 3.3 means that in order to lower the joint error, the DP gap of the predictor cannot
be too small. Of course, since the above inequality is a lower bound, it only serves as a necessary
condition for small joint error. Hence an interesting question would be to ask whether it is possible to
have a sufficient condition that guarantees a small joint error such that the DP gap of the predictor is
no larger than that of the perfect predictor, i.e., ∆BR(D0,D1). We leave this as a future work.

3.3 Fair Representations Lead to Accuracy Parity

In the previous sections we prove a family of information-theoretic lower bounds that demonstrate an
inherent tradeoff between fair representations and joint error across groups. A natural question to ask
then, is, what kind of parity can fair representations bring us? To complement our negative results,
in this section we show that learning group-invariant representations help to reduce discrepancy of
errors (utilities) across groups.

First of all, since we work under the stochastic setting where Da is a joint distribution over X and
Y conditioned on A = a, then any function mapping h : X → Y will inevitably incur an error due
to the noise existed in the distribution Da. Formally, for a ∈ {0, 1}, define the optimal function
h∗a : X → Y under the absolute error to be h∗a(X) := mDa(Y | X), where mDa(Y | X) denotes
the median of Y given X under distribution Da. Now define the noise of distribution Da to be
nDa

:= EDa [|Y −h∗a(X)|]. With these notations, we are now ready to present the following theorem:

Theorem 3.3. For any hypothesisH 3 h : X → Y , the following inequality holds:

|ErrD0
(h)− ErrD1

(h)| ≤ nD0
+ nD1

+ dTV(D0(X),D1(X))

+ min {ED0
[|h∗0 − h∗1|],ED1

[|h∗0 − h∗1|]} .

Remark Theorem 3.3 upper bounds the discrepancy of accuracy across groups by three terms: the
noise, the distance of representations across groups and the discrepancy of optimal decision functions.
In an ideal setting where both distributions are noiseless, i.e., same people in the same group are
always treated equally, the upper bound simplifies to the latter two terms:

|ErrD0
(h)− ErrD1

(h)| ≤ dTV(D0(X),D1(X)) + min {ED0
[|h∗0 − h∗1|],ED1

[|h∗0 − h∗1|]} .
If we further require that the optimal decision functions h∗0 and h∗1 are close to each other, i.e.,
optimal decisions are insensitive to the group membership, then Theorem 3.3 implies that a sufficient
condition to guarantee accuracy parity is to find group-invariant representation that minimizes
dTV(D0(X),D1(X)). We now present the proof for Theorem 3.3:

Proof of Theorem 3.3. First, we show that for a ∈ {0, 1}, ErrDa
(h) cannot be too large if h is close

to h∗a:

|ErrDa
(h)− nDa

| = |ErrDa
(h)− ErrDa

(h∗a)| =
∣∣EDa

[|Y − h(X)|]− EDa
[|Y − h∗a(X)|]

∣∣
≤ EDa [|h(X)− h∗a(X)|],

where the inequality is due to triangular inequality. Next, we bound |ErrD0(h)− ErrD1(h)| by:

|ErrD0(h)− ErrD1(h)| ≤ nD0 + nD1 +
∣∣ED0 [|h(X)− h∗0(X)|]− ED1 [|h(X)− h∗1(X)|]

∣∣.
In order to show this, define εa(h, h′) := EDa

[|h(X)− h′(X)|] so that∣∣ED0
[|h(X)− h∗0(X)|]− ED1

[|h(X)− h∗1(X)|]
∣∣ =

∣∣ε0(h, h∗0)− ε1(h, h∗1)
∣∣.

To bound
∣∣ε0(h, h∗0)− ε1(h, h∗1)

∣∣, realize that |h(X)− h∗a(X)| ∈ {0, 1}. On one hand, we have:∣∣ε0(h, h∗0)− ε1(h, h∗1)
∣∣ =

∣∣ε0(h, h∗0)− ε0(h, h∗1) + ε0(h, h∗1)− ε1(h, h∗1)
∣∣

≤
∣∣ε0(h, h∗0)− ε0(h, h∗1)

∣∣+
∣∣ε0(h, h∗1)− ε1(h, h∗1)

∣∣
≤ ε0(h∗0, h

∗
1) + dTV(D0(X),D1(X)),
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where the last inequality is due to
∣∣ε0(h, h∗1)− ε1(h, h∗1)

∣∣ =
∣∣D0(|h− h∗1| = 1)−D1(|h− h∗1| =

1)
∣∣ ≤ supE |D0(E)−D1(E)| = dTV(D0,D1). Similarly, by subtracting and adding back ε1(h, h∗0)

instead, we can also show that
∣∣ε0(h, h∗0)− ε1(h, h∗1)

∣∣ ≤ ε1(h∗0, h
∗
1) + dTV(D0(X),D1(X)).

Combine the above two inequalities yielding:∣∣ε0(h, h∗0)− ε1(h, h∗1)
∣∣ ≤ min{ε0(h∗0, h

∗
1), ε1(h∗0, h

∗
1)}+ dTV(D0(X),D1(X)).

Incorporating the two noise terms back to the above inequality then completes the proof. �

4 Empirical Validation

Our theoretical results on the lower bound imply that over-training the feature transformation function
to achieve group-invariant representations will inevitably lead to large joint errors. On the other
hand, our upper bound also implies that group-invariant representations help to achieve accuracy
parity. To verify these theoretical implications, in this section we conduct experiments on a real-world
benchmark dataset, the UCI Adult dataset, to present empirical results with various metrics.

Dataset The Adult dataset contains 30,162/15,060 training/test instances for income prediction.
Each instance in the dataset describes an adult from the 1994 US Census. Attributes include gender,
education level, age, etc. In this experiment we use gender (binary) as the sensitive attribute, and we
preprocess the dataset to convert categorical variables into one-hot representations. The processed
data contains 114 attributes. The target variable (income) is also binary: 1 if ≥ 50K/year otherwise 0.
For the sensitive attribute A, A = 0 means Male otherwise Female. In this dataset, the base rates
across groups are different: Pr(Y = 1 | A = 0) = 0.310 while Pr(Y = 1 | A = 1) = 0.113. Also,
the group ratios are different: Pr(A = 0) = 0.673.

Experimental Protocol To validate the effect of learning group-invariant representations with
adversarial debiasing techniques [5, 26, 34], we perform a controlled experiment by fixing the
baseline network architecture to be a three hidden-layer feed-forward network with ReLU activations.
The number of units in each hidden layer are 500, 200, and 100, respectively. The output layer
corresponds to a logistic regression model. This baseline without debiasing is denoted as NoDebias.
For debiasing with adversarial learning techniques, the adversarial discriminator network takes
the feature from the last hidden layer as input, and connects it to a hidden-layer with 50 units,
followed by a binary classifier whose goal is to predict the sensitive attribute A. This model is
denoted as AdvDebias. Compared with NoDebias, the only difference of AdvDebias in terms of
objective function is that besides the cross-entropy loss for target prediction, the AdvDebias also
contains a classification loss from the adversarial discriminator to predict the sensitive attribute
A. In the experiment, all the other factors are fixed to be the same between these two methods,
including learning rate, optimization algorithm, training epoch, and also batch size. To see how the
adversarial loss affects the joint error, the demographic parity as well as the accuracy parity, we vary
the coefficient ρ for the adversarial loss between 0.1, 1.0, 5.0 and 50.0.

Results and Analysis The experimental results are listed in Table 2. Note that in the table |ErrD0−
ErrD1

| could be understood as measuring an approximate version of accuracy parity, and similarly
∆DP(Ŷ ) measures the closeness of the classifier to satisfy demographic parity. From the table, it is
then clear that with increasing ρ, both the overall error ErrD (sensitive to the marginal distribution of
A) and the joint error ErrD0 + ErrD1 (insensitive to the imbalance of A) are increasing. As expected,
∆DP(Ŷ ) is drastically decreasing with the increasing of ρ. Furthermore, |ErrD0

− ErrD1
| is also

gradually decreasing, but much slowly than ∆DP(Ŷ ). This is due to the existing noise in the data
as well as the shift between the optimal decision functions across groups, as indicated by our upper
bound. To conclude, all the empirical results are consistent with our theoretical findings.

5 Related Work

Fairness Frameworks Two central notions of fairness have been extensively studied, i.e., group
fairness and individual fairness. In a seminal work, Dwork et al. [10] define individual fairness
as a measure of smoothness of the classification function. Under the assumption that number of
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Table 2: Adversarial debiasing on demographic parity, joint error across groups, and accuracy parity.

ErrD ErrD0 + ErrD1 |ErrD0 − ErrD1 | ∆DP(Ŷ )

NoDebias 0.157 0.275 0.115 0.189
AdvDebias, ρ = 0.1 0.159 0.278 0.116 0.190
AdvDebias, ρ = 1.0 0.162 0.286 0.106 0.113
AdvDebias, ρ = 5.0 0.166 0.295 0.106 0.032
AdvDebias, ρ = 50.0 0.201 0.360 0.112 0.028

individuals is finite, the authors proposed a linear programming framework to maximize the utility
under their fairness constraint. However, their framework requires apriori a distance function that
computes the similarity between individuals, and their optimization formulation does not produce
an inductive rule to generalize to unseen data. Based on the definition of positive rate parity, Hardt
et al. [14] proposed a post-processing method to achieve fairness by taking as input the prediction
and the sensitive attribute. In a concurrent work, Kleinberg et al. [21] offer a calibration technique
to achieve the corresponding fairness criterion as well. However, both of the aforementioned two
approaches require sensitive attribute during the inference phase, which is not available in many
real-world scenarios.

Regularization Techniques The line of work on fairness-aware learning through regularization
dates at least back to Kamishima et al. [19], where the authors argue that simple deletion of sensitive
features in data is insufficient for eliminating biases in automated decision making, due to the possible
correlations among attributes and sensitive information [25]. In light of this, the authors proposed a
prejudice remover regularizer that essentially penalizes the mutual information between the predicted
goal and the sensitive information. In a more recent approach, Zafar et al. [31] leveraged a measure
of decision boundary fairness and incorporated it via constraints into the objective function of logistic
regression as well as support vector machines. As discussed in Section 2, both approaches essentially
reduce to achieving demographic parity through regularization.

Representation Learning In a pioneer work, Zemel et al. [33] proposed to preserve both group
and individual fairness through the lens of representation learning, where the main idea is to find a
good representation of the data with two competing goals: to encode the data for utility maximization
while at the same time to obfuscate any information about membership in the protected group.
Due to the power of learning rich representations offered by deep neural nets, recent advances in
building fair automated decision making systems focus on using adversarial techniques to learn
fair representation that also preserves enough information for the prediction vendor to achieve his
utility [1, 5, 11, 24, 30, 34, 37]. Madras et al. [26] further extended this approach by incorporating
reconstruction loss given by an autoencoder into the objective function to preserve demographic
parity, equalized odds, and equal opportunity.

6 Conclusion

In this paper we theoretically and empirically study the important problem of quantifying the tradeoff
between utility and fairness in learning group-invariant representations. Specifically, we prove a
novel lower bound to characterize the tradeoff between demographic parity and the joint utility across
different population groups when the base rates differ between groups. In particular, our results
imply that any method aiming to learn fair representations admits an information-theoretic lower
bound on the joint error, and the better the representation, the larger the joint error. Complementary
to our negative results, we also show that learning fair representations leads to accuracy parity if
the optimal decision functions across different groups are close. These theoretical findings are also
confirmed empirically on real-world datasets. We believe our results take an important step towards
better understanding the tradeoff between utility and different notions of fairness. Inspired by our
lower bound, one interesting direction for future work is to design instance-weighting algorithm to
balance the base rates during representation learning.
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